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The KP equation

The KP equation

Non-linear dispersive wave equation

∂

∂x

(
−4

∂u

∂t
+ 6u

∂u

∂x
+
∂3u

∂x3

)
+ 3

∂2u

∂y2
= 0.

Line-soliton solutions of the KP equation model shallow-water waves
with peaks localized along straight lines.

Combinatorics of KP solitons studied in (?).
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The KP equation

The Grassmannian

Regular line-soliton solutions can be constructed from points in the
totally nonnegative Grassmannian.

For N ≤ M, let Gr(N,M) be the Grassmannian of N-planes in
M-space.

Represent points in Gr(N,M) by full-rank N ×M matrices, modulo
row operations.
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The KP equation

Plücker coordinates

The N × N matrix minors give homogeneous coordinates on
Gr(N,M), called Plücker coordinates.

For I an N-element subset of {1, 2, . . . ,M}, let ∆I (A) denote the
matrix minor of A corresponding to columns indexed by I .

The collection N-tuples indexing non-vanishing Plücker coordinates of
A the matroid of A, denoted M(A).
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The KP equation

The totally nonnegative Grassmannian

The totally nonnegative Grassmannian Gr≥0(N,M) is the locus of
Gr(N,M) where all Plücker coordinates are nonnegative.

Similarly, the totally positive Grassmannian Gr>0(N,M) is the locus
where all Plücker coordinates are positive.

The combinatorics of Gr≥0(M,N) was first studied in (?).
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The KP equation

Notation

Fix M “generic enough” points (pi , qi ) on the parabola q = p2, with

p1 < p2 < · · · < pM .

For I = {i1 < · · · < iN} ∈
([M]

N

)
, let

ΘI =
∑
i∈I

pix + qiy + ωi (t).

Here t is the multi-time parameter (t3, . . . , tM) and

ωi (t) =
M−1∑
k=3

pki tk .
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The KP equation

From matrices to soliton solutions

Let KI =
∏

`<m(pim − pi`)

Let A be a matrix representing a point in Gr≥0(N,M).

A uA(x , y , t) = 2
∂2

∂x2
(ln τA(x , y , t))

where we have
τA =

∑
I∈M(A)

∆I (A)KI exp(ΘI )
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Soliton Graphs

Contour plots

The function uA(x , y , t) models the height of a wave at time t.

Wave peaks give a contour plot.
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Figure: Contour plots corresponding to a point in Gr≥0(3, 6)
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Soliton Graphs

Contour plots are tropical curves

Can approximate the contour plot as the locus where

fA = max {ln(∆I (A)KI ) + ΘI : I ∈M(A)}

is nonlinear.

So fA chops up the (x , y)-plane into regions where one plane

z = ln (∆I (A)KI ) + ΘI (x , y , t)

is dominant over the others.
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Soliton Graphs

Asymptotic contour plots

Asymptotic contour plots: rescale the variables, can assume the
scalars ∆I (A) are negligible.

The asymptotic contour plot for fixed multi-time parameter t0 is the
locus where

f̂M = max{ΘI (x , y , t0) | I ∈M(A)}

is non-linear.

More precisely, f̂M = lims→∞
1
s fA(sx , sy , st0).
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Soliton Graphs

Example

Let N = 1, M = 4.

Choose parameters

p1 = −2 p2 = 0 p3 = 1 p4 = 2.

Let t = t3 = 1.

Then we have

θ1(x , y , t) = −2x + 4y − 8

θ2(x , y , t) = 0

θ3(x , y , t) = x + y + 1

θ4(x , y , t) = 2x + 4y + 8
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Soliton Graphs

Example Continued
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Figure: An asymptotic contour plot.
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Soliton Graphs

Soliton graphs

Goal: understand combinatorics of asymptotic contour plots.

Take plots up to isotopy, get soliton graphs.

Restrict to Gr>0(N,M), where all Plücker coordinates positive.

In this case, soliton graphs are plabic graphs (?).

Want to classify soliton graphs for Gr>0(N,M).
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Soliton Graphs

Constructing soliton graphs

Embed asymptotic contour plot in a disk, take graph up to isotopy.

Color an internal vertex white if the adjoining regions share M − 1
indices, and black otherwise.
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Figure: From contour plot to soliton graph.
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Soliton Graphs

Plabic graphs

Planar, bicolored graph embedded in a disk, satisfies some technical
conditions.

We label each face F plabic graph with an i if F is to the left of the
zig-zag path Ti ending at boundary vertex i .
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Soliton Graphs

Face labels of plabic graphs

The face labels determine the graph, up to contracting and
un-contracting unicolored edges.

Face labels of plabic graphs give clusters in the cluster algebra
structure of Gr(N,M) (?).

Every cluster containing only Plücker variables comes from a plabic
graph.
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Soliton Graphs

Weak Separation

A collection C of N-element subsets of {1, 2, . . . ,M} is the set of face
labels of a plabic graph for Gr(N,M) if and only if it is a maximal
weakly separated collection.

For any I , J ∈ C, if the numbers 1, . . . ,M are arranged in order around
a circle, we can draw a chord that separates I\J from J\I .

C has N(M − N) + 1 elements (so it is as large as possible).
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Soliton Graphs

Realizability

Theorem (?)

Every soliton graph for Gr>0(N,M) is a plabic graph. Face labels of the
plabic graph correspond to dominant exponentials of the soliton solution.

We say a collection of face labels is realizable if it comes from a
soliton graph.

Goal: classify realizable collections.
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Duality and soliton triangulations

The duality map

Map a plane to a point:

θi (x , y) = pix + qiy + ωi 7→ v̂i = (pi , qi , ωi )

Take convex hull of points, project from above to (p, q)-plane.

Get triangulation of the M-gon.
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Duality and soliton triangulations

Example continued

Recall:

p1 = −2 p2 = 0 p3 = 1 p4 = 2 t = 1
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Figure: A soliton tiling.
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Duality and soliton triangulations

The N = 2 case

ΘI (x , y) 7→ v̂I =
∑
i∈I

v̂i
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Duality and soliton triangulations

Induction

Use induction algorithm to construct tiling for Gr>0(N + 1,M) from
tiling for Gr>0(N,M) (?).
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Figure: Using the induction algorithm.
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Duality and soliton triangulations

Induction continued

Triangulation of the white polygons depends on the weights of our
points.
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Figure: From N = 2 to N = 3.
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Results

Summary of results

Question: is every maximal weakly separated collection realizable?

Answer is yes for...

Gr>0(2,M) (?).

Gr>0(3, 6) (?).

Gr>0(3, 7),Gr>0(3, 8) [Kodama and K.]

In general, the answer is no.

Karpman and Kodama (OSU) Soliton graphs September 4, 2018 25 / 1



Results

Choices of parameters

For N = 3, M = 6, 7 or 8, every weakly separated collection is
realizable for some choice of parameters p1, p2, . . . , pM .

Which plabic graphs we can realize depends on our choice of pi .
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Results

Examples
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Figure: Triangulations which are only realizable for some choices of parameters.
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Results

Classification for Gr(3, 6) and Gr(3, 7).

For Gr(3, 6), there are 34 possible graphs, each generic choice of
parameters lets us realize 32 of them (?).

For Gr(3, 7), there are 259 possible graphs, a each generic choice of
pi we can realize 231 of them [Kodama and K].

Main obstacle: same as in Gr(3, 6) case.

For Gr(3, 8), don’t yet have classification.

Karpman and Kodama (OSU) Soliton graphs September 4, 2018 28 / 1



Results

The general case

Not all weakly separated collections are realizable.

Can build plabic graph from any simple, non-stretchable arrangement
of pseudolines, which gives a counter-example [Thomas, 2017].

Smallest counter-example of this form is for Gr(9, 18)

Conjecture: much smaller counter-examples exist.
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Results

References I
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