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The KP equation

@ Non-linear dispersive wave equation

0 ou du  d3u 9%u

@ Line-soliton solutions of the KP equation model shallow-water waves
with peaks localized along straight lines.

e Combinatorics of KP solitons studied in (?).
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The KP equation

The Grassmannian

@ Regular line-soliton solutions can be constructed from points in the
totally nonnegative Grassmannian.

e For N < M, let Gr(N, M) be the Grassmannian of N-planes in
M-space.

@ Represent points in Gr(N, M) by full-rank N x M matrices, modulo
row operations.
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The KP equation

Plucker coordinates

@ The N x N matrix minors give homogeneous coordinates on
Gr(N, M), called Pliicker coordinates.

e For | an N-element subset of {1,2,..., M}, let A;(A) denote the
matrix minor of A corresponding to columns indexed by /.

@ The collection N-tuples indexing non-vanishing Pliicker coordinates of
A the matroid of A, denoted M(A).
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The KP equation

The totally nonnegative Grassmannian

e The totally nonnegative Grassmannian Gr>o(N, M) is the locus of
Gr(N, M) where all Pliicker coordinates are nonnegative.

e Similarly, the totally positive Grassmannian Grso(N, M) is the locus
where all Plicker coordinates are positive.

@ The combinatorics of Gr>o(M, N) was first studied in (?).
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The KP equation

Notation

e Fix M “generic enough” points (p;, ;) on the parabola g = p?, with

pr<p2<--<pm.

o For I ={ih <---<iy}e ([A,\/,I]), let

Q)= Z pix + qiy + wi(t).

iel

@ Here t is the multi-time parameter (ts, ..., ty) and

[ay

M—
w,-(t) = p,ktk.
k=3
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The KP equation

From matrices to soliton solutions

o Let K) = H€<m(pim - pie)

o Let A be a matrix representing a point in Gr>o(N, M).

2

0
A~ UA(X7y7t) = 2W(|nTA(X7y7t))

where we have

TA = Z A (A)K exp(©))
1eM(A)
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Soliton Graphs

Contour plots

@ The function ua(x, y, t) models the height of a wave at time t.

o Wave peaks give a contour plot.

t=0 t="70
200F ‘ ‘
100 ¢
0F
100}
s J 4 200k !
200 -100 O 100 200 200 -100 O 100 200

Figure: Contour plots corresponding to a point in Gr>o(3,6)
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Soliton Graphs

Contour plots are tropical curves

@ Can approximate the contour plot as the locus where
fa=max{In(A/(A)K)) +©,: 1 € M(A)}

is nonlinear.

@ So fa chops up the (x, y)-plane into regions where one plane
z=1In (A[(A)K/) + e/(X,y,t)

is dominant over the others.
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Asymptotic contour plots

@ Asymptotic contour plots: rescale the variables, can assume the
scalars A;(A) are negligible.

@ The asymptotic contour plot for fixed multi-time parameter tg is the

locus where
fam = max{O(x,y,to) | | € M(A)}
is non-linear.
o More precisely, fu( = lims_yoo %fA(SX,Sy,Sto).
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Soliton Graphs

Example

o Let N=1, M =4

@ Choose parameters

p1=—2 p2=0 p3=1 ps = 2.
o lett=1t3=1.
@ Then we have
O1(x,y,t) = —2x+4y — 8
‘92(X Y, ):
O3(x,y,t) =x+y+1
Oa(x,y,t) =2x+4y +8
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Soliton Graphs

Example Continued

Figure: An asymptotic contour plot.
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Soliton graphs

@ Goal: understand combinatorics of asymptotic contour plots.
@ Take plots up to isotopy, get soliton graphs.
@ Restrict to Grso(N, M), where all Pliicker coordinates positive.

o In this case, soliton graphs are plabic graphs (7).

e Want to classify soliton graphs for Gr=o(N, M).
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Soliton Graphs

Constructing soliton graphs

@ Embed asymptotic contour plot in a disk, take graph up to isotopy.

@ Color an internal vertex white if the adjoining regions share M — 1
indices, and black otherwise.

14
12 34 ——

23

Figure: From contour plot to soliton graph.

Karpman and Kodama (OSU) Soliton graphs September 4, 2018 15/1



Soliton Graphs

Plabic graphs

@ Planar, bicolored graph embedded in a disk, satisfies some technical
conditions.

@ We label each face F plabic graph with an i if F is to the left of the
zig-zag path T; ending at boundary vertex /.
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Face labels of plabic graphs

@ The face labels determine the graph, up to contracting and
un-contracting unicolored edges.

@ Face labels of plabic graphs give clusters in the cluster algebra
structure of Gr(N, M) (?).

o Every cluster containing only Pliicker variables comes from a plabic
graph.
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Weak Separation

@ A collection C of N-element subsets of {1,2,..., M} is the set of face
labels of a plabic graph for Gr(N, M) if and only if it is a maximal
weakly separated collection.

e For any I,J € C, if the numbers 1,..., M are arranged in order around
a circle, we can draw a chord that separates /\J from J\/.

e C has N(M — N) + 1 elements (so it is as large as possible).
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Soliton Graphs

Realizability

Theorem (?)

Every soliton graph for Grso(N, M) is a plabic graph. Face labels of the
plabic graph correspond to dominant exponentials of the soliton solution.

@ We say a collection of face labels is realizable if it comes from a
soliton graph.

@ Goal: classify realizable collections.
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The duality map

@ Map a plane to a point:

0i(x,y) = pix + qiy + wi = Vi = (pi, gi,wi)

@ Take convex hull of points, project from above to (p, g)-plane.

o Get triangulation of the M-gon.
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Duality and soliton triangulations

Example continued

@ Recall:
p1=—2 p2=0 p3=1 ps =2 t=1
y
Y.
3 V] 4 A\
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Figure: A soliton tiling.
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Duality and soliton triangulations

The N = 2 case

@l(Xay)
y
A% '/
3]
2]
4 V3
2 a1 Olvy1 X
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Duality and soliton triangulations

Induction

e Use induction algorithm to construct tiling for Grso(N + 1, M) from
tiling for Grso(N, M) (?).

1 10

5 6

Figure: Using the induction algorithm.
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Duality and soliton triangulations

Induction continued

@ Triangulation of the white polygons depends on the weights of our
points.
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Summary of results

@ Question: is every maximal weakly separated collection realizable?

@ Answer is yes for...
° Gr>0(27 M) (7)
° Gr>0(376) (7)

o Gr=o(3,7),Gr=o(3,8) [Kodama and K]

@ In general, the answer is no.
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Choices of parameters

@ For N=3, M =6,7 or 8, every weakly separated collection is
realizable for some choice of parameters p1, p2, ..., pm-

@ Which plabic graphs we can realize depends on our choice of p;.
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Examples

Figure: Triangulations which are only realizable for some choices of parameters.
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Classification for Gr(3,6) and Gr(3,7).

@ For Gr(3,6), there are 34 possible graphs, each generic choice of
parameters lets us realize 32 of them (?).

e For Gr(3,7), there are 259 possible graphs, a each generic choice of
pi we can realize 231 of them [Kodama and K].

e Main obstacle: same as in Gr(3,6) case.

e For Gr(3,8), don't yet have classification.
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The general case

@ Not all weakly separated collections are realizable.

@ Can build plabic graph from any simple, non-stretchable arrangement
of pseudolines, which gives a counter-example [Thomas, 2017].

o Smallest counter-example of this form is for Gr(9, 18)

o Conjecture: much smaller counter-examples exist.
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