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Introduction

Causality analysis methods are often applied to spike
train data to recover information about the exci-
tatory/inhibitory nature of the neurons being ob-
served, and also of hidden neurons that exert influ-
ence on recorded neurons. The causality maps which
are outputs of such methods are asymmetric matri-
ces that we view as directed networks. We consider
the problem of postprocessing such asymmetric net-
works via a tool that has recently gained popularity
for its ability to detect the organization of data—
the persistent homology (PH) method. For
example, prior results in the literature have estab-
lished a “learning time model" that uses PH methods
to recover topological information (i.e. connectivity
of locations) about the stimulus space of rodent hip-
pocampal place cells from their spike trains. By pre-
processing with a causality analysis method before
applying PH, we expect to decrease the error rate
in such a model. However, standard PH requires
input data to be symmetric, and cannot be applied
directly to asymmetric causal interaction data. We
explore a recently-developed tool called Dowker Per-
sistent Homology (DPH) that accepts any asymmet-
ric, non-metric data as input. Using this tool, we re-
cover topological information from simulated spike
train data with higher accuracy than the learning
time model.

Contributions

We simulate a database of 3000 hippocampal
spike train rasters tfrom random walks of a ro-
dent in arenas with different numbers of ran-
domly placed obstacles. We process the rasters
into directed, weighted networks, and then ap-
ply a recently developed topological data analysis
technique called Dowker Persistent Homology

(DPH). We conclude that DPH is successful in

recovering the ground truth topological informa-
tion (i.e. the number of obstacles) from such spike
train data, and that it exhibits higher accuracy
in a classification task than existing approaches.

Figure 1: Sample place fields, place cells, and spike train
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Figure 2: Single linkage dendrograms (0:blue, 1:green, 2:red, 3:magenta, 4:yellow) and 2 dimensional MDS plots of persistence
diagrams produced by the learning time model (left) and the network DPH model (right)

Simulation Procedure

The first step was to generate 5 arenas by randomly choosing 5 locations to place obstacles, such that the
obstacles do not overlap with each other or the arena’s boundary. For each arena we chose 150 locations
uniformly at random for place field centers such that the place fields covered the whole arena, and a corre-
sponding random walk trajectory R(t) recorded as a function of time. The spike train for each place cell was
cenerated by an inhomogenous Poisson process. The mean u,. of the Poisson firing model of each place cell ¢

at step t is defined as follows:
dist(c, R(t))) 2)
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Here f is generated by a log normal distribution whose mean is the max firing rate »r = 20H 2z and standard
deviation is 1.2r, and dist(c, R(t)) is the distance between ¢ and position R(t) of the rat at step t. We first
computed 20 spike train rasters using the Poisson firing model. Then we repeated the experiment by choosing
a new trajectory and list of place field centers. In total, for each arena and choice of obstacle centers, we
chose 6 trajectory-place field pairs, giving a total of 120 rasters. We repeated the process of choosing obstacle
centers a total of 5 times, thus giving 600 rasters for each of the 5 arenas for a total of 3000 rasters.

Directed Network Transformation and Dowker Persistent Homology

A network is a set of nodes with pairwise edge relations given by real numbers. For each spike train, a

network (X, wyx) was constructed as follows: X consisted of 150 nodes (one per place cell), and for each
Z]\-[%SEW where

N; i(5) = 4 time cell x; spiked at least 3 times in a window of 5 steps after cell z; spiked at least 3 times

1 <14,7 <150, the weight of edge (x;, ;) was given by wx(x;, ;) =1

The DPH method proceeds by defining a nested sequence of simplicial complexes. Persistent homology
methods are then applied to this intermediate construction to obtain an output called a persistence barcode.
Examples are provided below. The long bars correspond to the number of obstacles in the arena, and short
bars correspond to topological noise in the data.
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Figure 3: Dowker persistence diagrams of arenas with 1 and 4 obstacles
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Variables
Arena size 2m X 2m
Radius of obstacle 20cm
Number of place fields 150
Max radius of place fields 15em
Max firing rate 20H =
Number of Steps 5000
Distance per step 15cm

1-nn error (600 rasters; network model) 0.19607
1-nn error (600 rasters; learning time) 0.5546

Table 1: Simulation variables and error rates.
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Figure 4: Slice of 3D MDS plot of Dowker persistence diagrams.

Video on research.math.osu/networks/Datasets.html

Comparison to prior approaches

The DPH method was compared to an existing ap-
proach, the learning time model [1], for obtaining
topological information from spike train data. This
older model does not incorporate the asymmetric
structure of the time series data in the spike trains,
and its performance is worse than our method of
applying DPH after first transtorming to a directed
network. On a restricted dataset of 600 rasters, the
I-nearest neighbor classification error rates for the
learning time model and the network model were
0.5546 and 0.19607 respectively. The error for
the network model on the full dataset was 0.1995.
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