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Abstract—While persistent homology has been successfully
used to provide topological summaries of point cloud data, the
question of computing persistent homology of graphs or networks
remains unclear. In particular, the existing literature does not
provide a treatment of persistent homology for directed networks
that is sensitive to asymmetry. We study a method for construct-
ing simplicial complexes from weighted, directed networks that
captures directionality information, and we are able to prove
that the persistent homology of such complexes is stable with
respect to a certain notion of network distance. We illustrate our
construction on a database of simulated hippocampal networks.

I. INTRODUCTION

When faced with the task of analyzing a complex network,
a common approach is to extract certain invariants of the
network, and infer properties of the original network from
the properties of these invariants. In the most general setting,
a network on n nodes is an n × n matrix with real-valued
entries. The invariants that one can extract from a network
depends on the additional conditions satisfied by the matrix. In
the simple case of an undirected weighted network on n nodes,
which can be viewed as a symmetric n× n matrix with real-
valued entries, the spectral theorem guarantees a set of real
eigenvalues that can yield information about the dynamics of
the network. An even simpler situation is that of an n-point
metric space, for which the adjacency matrix would have zeros
on the diagonal, and would also satisfy metric properties such
as symmetry and the triangle inequality. In this simpler setting,
one mainstream approach is to extract an invariant known in
the applied mathematics literature as a persistence diagram—
a set of intervals that represents the topology of the space,
parametrized by resolution. This diagram is obtained by first
converting the metric data into a family of topological objects
called simplicial complexes, organizing them by an inclusion
hierarchy called a filtration, and then applying the theory of
persistent homology (PH) to this filtration. For the sake of
brevity, we simply assert that PH has been successfully applied
to numerous problems in the sciences, and point the reader
to [1]–[3] for accounts of these applications written by the
pioneers of the theory. For an application to signal processing,
see [4].

The success of persistent homology in the setting of finite
metric spaces leads us to believe that persistence diagrams
would be a powerful invariant in the general network setting
as well, if only one could find an appropriate adaptation
that does not require any metric assumptions. Some past
approaches that have claimed to perform persistent homology
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on networks actually assume that the underlying data satisfies
metric properties, thus working in the simplified setting where
PH is fully understood [5], [6]. A more general approach is
followed in [7]–[10], where the input data sets are required to
be symmetric matrices, and the main construction involves a
Rips complex (also called a weighted clique complex), which
we describe for now as an object that is sensitive to the
underlying graph structure of the network. However, there are
two challenges facing this method: (1) directed networks are
not treated in a way that is sensitive to asymmetry, and (2)
the clique complex, which can be an n-dimensional object for
n-point networks, is built up using only 1-dimensional data
and thus discards additional data which may be of importance
to the network.

In this paper, we study a construction that is known in
the finite metric space setting as the Dowker complex [11].
We extend both the Dowker complex and clique complex
construction to the setting of directed networks with real-
valued weights, without assuming any metric properties. Fol-
lowing the line of work in [12], where stability of persistence
diagrams arising from finite metric spaces was established,
we formulate similar stability results for persistence diagrams
arising from taking the Rips or Dowker filtrations of a network.
We also show that unlike the Rips filtration, the Dowker
filtration is sensitive to asymmetry.

We test our method on a database of simulated hippocampal
networks, obtained by modeling the brain activity of an animal
that travels through five types of arenas having different
numbers of obstacles. We follow a model used in [13], [14],
in which a simplicial complex representation of the animal’s
spatial environment was built by tracking which groups of
cells in the hippocampus “spiked” together. We extend this
model to take into account both the frequency with which cell
groups fire together, and also the causality relation between
cell groups that fire one after another. We record this data
as a Markov chain that we interpret as a network, and by
applying the Dowker filtration construction, we are able to
recover the number of obstacles contained in each arena. In
particular, by using our stability results, we are able to show
that the networks which arise from the same environment have
a higher tendency to cluster together than networks arising
from different environments.

II. BACKGROUND ON PERSISTENT HOMOLOGY

The following is a high-level overview of persistent homol-
ogy; details can be found in [15]. Given a finite set X with
cardinality |X|, a simplicial complex is a subset KX of the
power set Pow(X) such that whenever σ ∈ KX , we also have
τ ∈ KX for any subset τ ⊆ σ. The elements σ ∈ KX are



called simplices, and any subset τ ⊆ σ is called a face. More
specifically, simplices consisting of n + 1 points (for n ≥ 0)
are called n-simplices. To a simplicial complex KX , one may
associate a vector space Hk(KX) for each dimension k ≤ |X|,
obtained by a method called computing homology with field
coefficients.

Persistent homology enters the picture in the following way:
for a finite set of points, one induces a family of simplicial
complexes Kε

X for a range of values of ε ∈ R. The simplicial
complexes are produced in a way such that Kε

X ⊆ Kε′

X

for any ε′ ≥ ε. The nested family of simplicial complexes,
along with the inclusion maps, is called a filtration, and is
denoted by {Kε

X ↪→ Kε′

X}ε≤ε′ . For a given dimension k,
computing homology with field coefficients for each of these
simplicial complexes then yields a sequence of vector spaces
with linear transformations mapping between them, denoted
{Hk(K

ε
X) → Hk(K

ε′

X)}ε≤ε′ . In practical applications, one
usually takes coefficients in the field Z2. The dimension of
each such vector space is called its Betti-k number. Each vector
space is generated by homology classes that correspond to
topological features of the underlying simplicial complex. The
crux of persistent homology is to track the birth and death
of these topological features in Kε

X for different values of
ε. The lifespan of each homology class is an interval, and
a persistence barcode is simply the collection of all such
intervals associated to the space. This collection is visualized
as a stack of intervals, hence the name “barcode.”

An alternate, equivalent representation of the information in
a persistence barcode is a persistence diagram, which consists
of the birth and death times of features as pairs (b, d) in the
extended plane R2

, counted with multiplicity. Because d ≥ b,
these points lie above the diagonal, and for a technical reason,
the persistence diagram is defined to include the diagonal
with infinite multiplicity. This permits the definition of the
bottleneck distance between two persistence diagrams Dk(X)
and Dk(Y ) in dimension k:

dB(Dk(X), Dk(Y )) := min
{

max
x∈Dk(X)

‖x− ϕ(x)‖∞ :

ϕ : Dk(X)→ Dk(Y ) a bijection
}
.

It is worth noting that the Betti numbers of a topological
space have an intuitive meaning: Betti-0 is the number of con-
nected components, Betti-1 gives the number of 1-dimensional
holes, and Betti-2 gives the number of 2-dimensional voids.

We computed persistence using the Javaplex package for
Matlab; a full description of Javaplex can be found in [16].

III. NETWORKS AND NETWORK DISTANCES

A network is a finite set X together with an edge weight
function ωX : X × X → R. The collection of all networks
will be denoted N . Note that we do not assume any metric
properties in defining a network. Given a finite set X and
two edge weight functions ωX , ω′X defined on it, we can use
the `∞ distance as a measure of network similarity between
(X,ωX) and (X,ω′X):

‖ωX − ω′X‖`∞(X×X) := max
x,x′∈X

|ωX(x, x′)− ω′X(x, x′)|.

A slight generalization of the `∞ distance is required when
dealing with networks having different sizes: Given two sets
X and Y , we need to decide how to match up points of X with
points of Y . Any such matching will yield a subset R ⊆ X×Y
such that πX(R) = X and πY (R) = Y , where πX and πY
are the projection maps from X×Y to X and Y , respectively.
The formal term for such a matching is a correspondence. The
distortion of a correspondence is defined as follows:

dis(R) := max
(x,y),(x′,y′)∈R

|ωX(x, x′)− ωY (y, y′)|.

We denote the set of all correspondences between X and Y by
R(X,Y ). Note that the set X×Y is always a correspondence,
so R(X,Y ) is always nonempty. We then minimize the
distortion over all correspondences, and define the network
distance as follows:

dN ((X,ωX), (Y, ωY )) :=
1
2 min
R∈R(X,Y )

dis(R).

The motivation for defining the network distance in this way
is that when restricted to the case of comparing finite metric
spaces (X, dX), (Y, dY ), the network distance is exactly the
Gromov-Hausdorff distance that was used in [12], [17] to
prove stability results for persistence diagrams. Thus the
stability results in our paper can be viewed as direct extensions
of results in the existing literature. The network distance as
defined above has previously been used to study network
motifs and other invariants [18]–[20].

IV. THE RIPS COMPLEX OF A NETWORK

For a metric space (X, dX), the diameter of a subset σ ⊆
X is defined as diam(σ) := maxx,x′∈σ dX(x, x′). The Rips
complex of a metric space (X, dX) is then defined for each
δ ∈ R as Rδ

X := {σ ∈ Pow(X) : diam(σ) ≤ δ} [21].
Since diameter is a metric concept, it does not apply directly

to general networks. An analogous notion for networks can be
defined as follows: for any (X,ωX) ∈ N , we define the weight
of a subset as a map wgtX : Pow(X)→ R given by:

wgtX(σ) := max
x,x′∈σ

ωX(x, x′).

The weight of a two-node network is illustrated in Figure 1.
Observe that for a metric space, the weight of a subset is
exactly its diameter. Next we can define the Rips complex of
a network as before:

Rδ
X = {σ ∈ Pow(X) : wgtX(σ) ≤ δ} , for (X,ωX) ∈ N .

The Rips complex as defined above yields a valid simplicial
complex on a network for each parameter δ ∈ R. Thus to
any network (X,ωX), we may associate the Rips filtration
{Rδ

X ↪→ Rδ′

X}δ≤δ′ . For each k ∈ Z≥0, we denote the k-
dimensional persistence diagram by DR

k (X). The Rips filtra-
tion of a network is stable to small perturbations of the input
data; this is the content of the next proposition.

Proposition 1. Let (X,ωX), (Y, ωY ) ∈ N . Then we have:

dB(D
R
k (X), DR

k (Y )) ≤ 2dN (X,Y ).
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Fig. 1: Computing the weight of a network (X,ωX).

The preceding proposition gives a way to compare two
different networks by computing their persistence diagrams.
Thus computing persistence diagrams becomes a well-defined
method for comparing networks, in the same spirit as that
of computing clustering coefficients, degree distributions, or
betweenness centrality. The idea of computing persistence
diagrams to compare finite metric spaces appeared in [12].

The Rips complex approach is undoubtedly valuable; see
[9], [10], [22] for applications of the Rips complex to sym-
metric networks. However, it is open to several criticisms.
First, the Rips complex of a network is blind to directed edge
weights, because for any two-point subset as in Figure 1, the
wgt function simply picks out the maximum edge weight,
regardless of direction. Thus Rips is not an appropriate method
for analyzing networks where directedness contains important
structural information. Second, the Rips complex does not
absorb information in dimensions higher than one: in order for
any subset of points to span a simplex, the only requirement is
that the pairwise edge weights in the subset are below a certain
threshold. One might instead desire an n-simplex to form only
if the n+1 points together satisfy a common property. Finally,
simplices in a Rips complex are not formed with respect to any
“central authority.” This could be undesirable in, for example,
a small-world network, where one would desire simplices to
be formed with respect to particular “hub” nodes.

We propose using a more powerful structure, called the
Dowker filtration (named after CH Dowker [23]), which
addresses each of the concerns listed above.

V. THE DOWKER FILTRATION OF A NETWORK

Given a network (X,ωX) ∈ N and δ ∈ R, let Rδ,X ⊆
X ×X be defined as follows:

Rδ,X := {(x, x′) : ωX(x, x′) ≤ δ} .

Observe that there exist δ0, δ1 ∈ R such that Rδ,X = ∅ for
any δ ≤ δ0, and Rδ,X = X ×X for any δ ≥ δ1. Furthermore,
given δ ≤ δ′, we have Rδ,X ⊆ Rδ′,X .

Using Rδ,X , we build a simplicial complex Dsi
δ,X as follows:

Dsi
δ,X := {σ ∈ Pow(X) : there exists p ∈ X

such that (x, p) ∈ Rδ,X for each x ∈ σ}.

Thus an n-simplex σ = [x1, . . . , xn] belongs to Dsi
δ,X

whenever there exists a distinguished point p ∈ X such that
ωX(xi, p) ≤ δ for each xi ∈ σ. If σ ∈ Dsi

δ,X , it is clear that
any face of σ also belongs to Dsi

δ,X . We call Dsi
δ,X the Dowker

δ-sink complex associated to X , and refer to p as a sink for σ
(where σ and p should be clear from context).

Since {Rδ,X}δ is an increasing (i.e. nested) sequence of
sets, it follows that Dsi

δ,X is an increasing sequence of simpli-
cial complexes. In particular, given δ ≤ δ′, there is a natural
inclusion map Dsi

δ,X ↪→ Dsi
δ′,X . We write Dsi

X to denote the
filtration {Dsi

δ,X ↪→ Dsi
δ′,X}δ≤δ′ associated to X . We call this

the Dowker sink filtration on X . For each k ∈ Z≥0, we
denote the k-dimensional persistence diagram arising from this
filtration by Dsi

k (X).
Note that we can define a dual construction as follows:

Dso
δ,X := {σ ∈ Pow(X) : there exists p ∈ X

such that (p, x) ∈ Rδ,X for each x ∈ σ}.

Thus an n-simplex σ = [x1, . . . , xn] belongs to Dso
δ,X when-

ever there exists p ∈ X such that ωX(p, xi) ≤ δ for each
xi ∈ σ. We call Dso

δ,X the Dowker δ-source complex associated
to X , and refer to the distinguished point p as a source for
σ. The filtration {Dso

δ,X ↪→ Dso
δ′,X}δ≤δ′ associated to X is

called the Dowker source filtration, denoted Dso
X . We denote

the associated k-dimensional persistence diagram by Dso
k (X).

Two relevant observations that we can already make are
as follows: (1) Dowker complexes capture higher-dimensional
structure, because all the n+1 points of an n-simplex satisfy
a common property on the edge weights (relative to a source
or sink node), and (2) Nodes with numerous low-weight edges
pointing inward (or outward) are crucial in the formation of
the complex, suggesting that it would appropriately capture
the effect of hub nodes in a small-world network.

In the setting of finite metric spaces, the Dowker complex
is related to constructions known as the Čech and witness
complexes [21]. Stability results analogous to our Proposition
3 can be formulated in the metric space setting using well-
known notions of distance between metric spaces [17]. Our
contribution lies in clarifying the Dowker complex for net-
works, and providing stability results using a notion of network
distance that has been applied in other constructions [18]–[20].

A. Dowker’s Theorem and Equivalence of Diagrams

As an application of a result by Dowker [23], we get the fol-
lowing result: for any network (X,ωX) ∈ N , any δ ∈ R, and
any dimension k ∈ Z≥0, we have Hk(D

si
δ,X) = Hk(D

so
δ,X). In

particular, by proving a certain extension of Dowker’s theorem
and then applying the Persistence Equivalence Theorem [15],
we are able to prove the following duality result:

Theorem 2. For any k ∈ Z≥0 and (X,ωX) ∈ N , we have:

Dsi
k (X) = Dso

k (X).

Thus we may call either of the two diagrams above the
k-dimensional Dowker diagram of X , denoted DD

k (X).
As in the case of the Rips filtration, the Dowker filtration

enjoys the following stability property:

Proposition 3. Let (X,ωX), (Y, ωY ) ∈ N . Then we have:

dB(D
D
k (X), DD

k (Y )) ≤ 2dN (X,Y ).

As in the case of the Rips filtration, the preceding proposi-
tion gives a method of comparing two networks (of different
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Fig. 2: Y is similar to X , but with one edge flipped.

sizes) by comparing their persistence diagrams. Thus the
bottleneck distance, which is a polynomial-time computation
[24], becomes a proxy for computing the network distance.

B. Dowker Filtrations are Sensitive to Directionality

The directedness of a network (X,ωX) is implicitly cap-
tured in the construction of its source and sink Dowker com-
plexes. Additionally, we provide an explicit example showing
that Dowker filtrations are sensitive to directionality. Consider
the networks (X,ωX) and (Y, ωY ) in Figure 2. Observe that
(Y, ωY ) is obtained from (X,ωX) by swapping the edge
weights between nodes a and c. We argue the following: (1)
the Rips persistence diagrams of the two networks are the
same, and (2) the Dowker persistence diagrams of the two
networks are different.

To see (1), one can first verify that Rδ
X = Rδ

Y for each
δ ∈ R, by noting that wgtX({a, c}) = wgtY ({a, c}) = 4. One
can then show, using the Persistence Equivalence Theorem
[15], that DR

k (X) = DR
k (Y ) for each dimension k.

To show that the Dowker diagrams of X and Y are different,
we simply compute the persistence barcodes using Javaplex,
and present the results in Figure 3. Note that there are no
persistent 1-dimensional intervals for X , whereas there is a
single 1-dimensional interval, persisting for δ ∈ [3, 4], for Y .

VI. APPLICATION: SIMULATED HIPPOCAMPAL NETWORKS

In the neuroscience literature, it has been shown that as an
animal explores a given environment, specific “place cells”
in the hippocampus show increased activity at specific spatial
regions, called “place fields” [25]. Each place cell shows a
spike in activity when the animal enters the place field linked
to this place cell, accompanied by a drop in activity as the
animal goes elsewhere. To understand how the brain processes
this data, a natural question to ask is the following: Is the
time series data of the place cell activity, referred to as “spike
trains”, enough to detect the structure of the environment?

Approaches based on homology [13] and persistent ho-
mology [14] have shown positive results in this direction. In
[14], the authors simulated the trajectory of a rat in an arena
containing “holes.” A simplicial complex was then built as
follows: whenever n + 1 place cells with overlapping place
fields fired together, an n-simplex was added. Then it was

Fig. 3: Dowker persistence barcodes of networks (X,ωX) and
(Y, ωY ) from Figure 2.

shown that the Betti-1 number of this simplicial complex
would accurately represent the number of holes in the arena.

We repeated this experiment with the following change
in methodology: viewing the trajectory as a Markov chain,
we induced a directed network and computed the associated
Dowker sink filtrations. The directedness corresponds to the
natural intuition that an animal might have a preferred or
familiar path for entering certain regions. After computing the
Dowker sink filtrations associated to these directed networks,
we compared the bottleneck distances between the resulting
1-dimensional persistence diagrams.

In our experiment, there were five environments. The first
was a square of side length L = 10, with four circular
“holes” or “forbidden zones” of radius 0.2L that the trajectory
could not intersect. The other four environments were those
obtained by removing the forbidden zones one at a time. In
what follows, we refer to the environments of each type as
4-hole, 3-hole, 2-hole, 1-hole, and 0-hole environments. For
each environment, a random-walk trajectory of 5000 steps was
generated, where the animal could move along a square grid
with 20 points in each direction. The grid was obtained as
a discretization of the box [0, L] × [0, L], and each step had
length 0.05L. The animal could move in each direction with
equal probability. If one or more of these moves took the
animal outside the environment (a disallowed move), then the
probabilities were redistributed uniformly among the allowed
moves. Each trajectory was tested to ensure that it covered the
entire environment, excluding the forbidden zones.

For each of the five environments, 20 trials were conducted,
producing a total of 100 trials. For each trial tk, an integer nk
was chosen uniformly at random from the interval [150, 200].
Then nk place fields of radius 0.05L were scattered uniformly
at random inside the corresponding environment for each tk.



A spike on a place field was recorded whenever the trajectory
would intersect it. For each trial tk, the corresponding network
(X,ωX) was constructed as follows: X consisted of nk nodes
representing place fields, and for each 1 ≤ i, j ≤ nk, the
weight ωX(xi, xj) was given by ωX(xi, xj) = 1 − Ni,j(5)

Nj
,

where

Ni,j(5) = # times cell xj spiked in a window of 5
time units after cell xi spiked,

and Nj = total # times cell xj spiked at any time.

Next, we computed the Dowker persistence diagrams of
each of the 100 networks. We then computed a 100 × 100
matrix consisting of the bottleneck distances between all
the 1-dimensional diagrams. The single linkage dendrogram
generated from this bottleneck distance matrix is shown in
Figure 4. The labels are in the format env-<nh>-<nn>,
where nh is the number of holes in the environment, and nn
is the number of place fields. Note that with some exceptions,
networks corresponding to the same environment are clustered
together. We conclude that the Dowker filtration succeeded in
capturing the intrinsic differences between the five classes of
networks arising from the five different environments, even
when the networks had different sizes.

At the moment we are working on expanding the database of
networks on which to test and evaluate the Dowker filtration.
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