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Abstract— It is a common belief that biological networks are
determined by their network motifs. Empirical results show
that simulated networks with similar motif structure also reflect
similarity across other structural measures. In this work we
tackle this question from a theoretical perspective and announce
our results proposing a family of invariants, the motif sets, as a
natural modelization of “bags of motifs”. We prove that these
motif sets precisely characterize networks which are weakly
isomorphic, in the sense that the networks are at 0-distance
with respect to a certain pseudometric on the space of all
networks. This notion differs from the usual notion of (strong)
isomorphism. We further explore a notion of skeleton of a
network and establish that this construction mediates between
strong and weak isomorphism, in the sense that two networks
are weakly isomorphic if and only if there exists a strong
isomorphism between their respective skeleta.

I. INTRODUCTION

Networks which show the relationships within and be-
tween complex systems are key tools in a variety of
current scientific areas. In the domain of bioinformatics,
networks have been used to represent molecular activity
[12], metabolic pathways [10], functional relations between
enzyme clusters [8], genetic regulation [13], and brain orga-
nization [11], [9]. Other examples of networks include social
networks [3], information networks such as the World Wide
Web [5], and technological networks such as the electric
power grid [15]. For a more comprehensive overview of the
literature on complex networks, consult [7].

One of the prevalent hypotheses used in systems biology
and network analysis is that complex networks are assembled
from simpler subnetworks called motifs [13], [14], [2], [6],
[1]. Motifs have been used to characterize transcription reg-
ulation networks and protein-protein interaction [16]. Sporns
and Kötter have used motifs to simulate network datasets that
resemble real brain networks across a variety of structural
measures [14]. These considerations motivate the following
theoretical question:

Is it possible to reconstruct, up to isomophism, a
network from the knowledge of its subnetworks?

The goal of this work is to provide an answer to the
question above. In order to be able to reason about and
eventually answer this question one needs to define several
concepts, for example: what is the definition of network that
one should use, what is a suitable notion of isomorphism
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between two networks, and what is meant by “knowledge of
its subnetworks”?

Biological networks may have asymmetric edge relations
and autoregulatory properties, so from a physiological per-
spective, they should be represented by directed, weighted
networks with self-loops, without necessarily imposing any
additional conditions on edge weights. A natural choice is
therefore to represent networks as weighted directed graphs,
where the weights are allowed to be real numbers. One
natural notion of isomorphism in this setting is the usual
notion of graph isomorphism which in our context we
call strong isomorphism. With regards to subnetworks: we
organize all the motifs present in a given network X into
motif sets: these “bags”, denoted MnpXq for n “ 1, 2, . . .,
contain all motifs involving at most n vertices. For example,
M3pXq contains all possible motifs of size 3 or smaller and
so on. A precise definition is given §II.

Contributions.

In this work we first verify that under the notion of strong
isomorphism the question above cannot admit a positive
answer. As a second step, we identify an alternative notion,
weak isomorphism, under which we establish an affirmative
answer to the question. As a third development, we study
and clarify the precise relationship between weak and strong
isomorphism: we introduce the skeleton of a network X as
a minimalistic representation of the structural information
contained in X and prove that two networks are weakly iso-
morphic if and only if their skeleta are strongly isomorphic.

In order to be able to formulate our answer to the
network reconstruction question posed above we utilize a
notion of distance on the space of all possible networks
with the property that two networks are weakly isomorphic
exactly when this distance vanishes. As a by-product of this
construction we identify a number of network signatures or
invariants that are stable under perturbation in the sense
of this distance. Invariants are useful because they can be
computed quickly and can be used to distinguish between
distinct networks. Lower bounds for the distance between
two networks arise by computing distances between the
(often simpler) invariants associated to the networks.

In this paper we briefly describe our framework and result
— a complete presentation is forthcoming.

II. NETWORKS, ISOMORPHISM, AND MOTIFS

Let X be a finite set, and let ωX be a function from XˆX
to R. By a network, we will mean a pair pX,ωXq. We will
denote the universe of all networks by N . Notice that we do
not make any assmptions on the range of ωX : in particular,
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Fig. 1. Networks over one and two nodes with their weight functions.

ωX could be negative. Our framework therefore includes
but is not limited to finite metric spaces. In particular, our
networks are directed.

We will refer to the points of X as nodes and ωX as
the weight function of X . Pairs of nodes will be called
edges. The information contained in a network should be
preserved when we relabel the nodes in a compatible way;
we formalize this idea by the following notion of strong
isomorphism of networks: To say pX,ωXq and pY, ωY q
are strongly isomorphic means that there exists a bijection
ϕ : X Ñ Y such that ωXpx, x1q “ ωY pϕpxq, ϕpx

1qq for all
x, x1 P X . Note that this definition is exactly the usual notion
of isomorphism between weighted, directed graphs. We will
denote a strong isomorphism between networks by X –s Y .
This definition captures the simple idea that permuting the
nodes should not affect the structure of the network. Notice
that a necessary condition for two networks to be strongly
isomorphic is that they have the same number of nodes.

The following examples illustrate these concepts.
Example 1: Networks with one or two nodes will be very

instructive in providing examples and counterexamples, so
we introduce them now with some special terminology. See
Figure 1.
‚ Networks with one node: any network with exactly one

node p can be specified by a real number α, and we we
will often denote them by N1pαq. From our definition,
it follows that networks N1pαq and N1pα

1q are strongly
isomorphic if and only if α “ α1.

‚ Given α, β, δ and γ in R let Ω “
`

α δ
γ β

˘

. This matrix
induces a network N2pΩq over two nodes. Any network
with two nodes can be represented this way. Notice that
N1pαq fl

s N2pΩq since they have different numbers of
nodes. Given Ω,Ω1 P R2ˆ2, N2pΩq –

s N2pΩ
1q ô there

exists a permutation matrix P of size 2 ˆ 2 such that
Ω1 “ P ΩPT .

‚ Any k-by-k matrix Σ P Rkˆk induces a network on
k nodes, which we refer to as NkpΣq. Notice that
NkpΣq – N`pΣ

1q if and only if k “ ` and there exists a
permutation matrix P of size k such that Σ1 “ P ΣPT .

In what follows we will precisely model a motif on
a network X as any subnetwork of X together with its
inherited weights. For a sequence pxiqni“1 of nodes in a
network X , we will denote the associated weight matrix
by ppωXpxi, xjqqqni,j“1: this weight matrix contains all the
information there is, up to isomorphism, about the motif
defined by the points pxiqni“1.

Definition 1 (motif set): For each n P N and each X P N ,

define Ψn
X : Xn Ñ Rnˆn to be the map px1, ¨ ¨ ¨ , xnq ÞÑ

ppωXpxi, xjqqq
n
i,j“1. Note that Ψn

X is simply a map that
sends each sequence to its corresponding weight matrix.
Let F pRnˆnq denote the finite subsets of Rnˆn. Then let
Mn : N Ñ F pRnˆnq denote the map defined by

pX,ωXq ÞÑ tΨn
Xpx1, . . . , xnq : x1, . . . , xn P Xu .

We refer to MnpXq as the n-motif set for X .
Notice that for a fixed natural number n, the set MnpXq is
a finite subset of Rnˆn. The interpretation is that MnpXq is
a bag containing all the motifs of X that one can form by
looking at all subnetworks of size n (with repetitions).

Example 2: Consider the two networks from Example 1.
Then we have M1pN2pΩqq “ tα, βu and

M2pN2pΩqq “
 

p α α
α α q ,

´

β β
β β

¯

,
`

α δ
γ β

˘

,
`

β γ
δ α

˘ (

,

M2pN1pαqq “ tp
α α
α α qu .

In line with our discussion in the introduction, we wish
to examine the extent to which motif sets determine the
structure of a network. With the minimal definitions we
have so far, we now formulate the conjecture that strong
isomorphism of networks is characterized by equality of
motif sets.

Conjecture 1 (strong isomorphism conjecture): Let
X,Y P N . Then MnpXq “ MnpY q for all n P N if and
only if X –s Y.

This conjecture is in general false: indeed, Mn

`

N1p1q
˘

“

MnpN2p12ˆ2qq “ t1nˆnu for all n P N, but we know the
two intervening networks are not strongly isomorphic (since
they have different cardinalities). Here 1nˆn denotes the all-
ones matrix of size nˆ n.

It turns out, surprisingly, that a weaker but very natural
version of the conjecture above holds in full generality. We
first declare that networks X and Y are weakly isomorphic,
denoted X –w Y , if there exists a finite set Z and surjective
maps φX : Z Ñ X and φY : Z Ñ Y such that

ωXpφXpzq, φXpz
1qq “ ωY pφY pzq, φY pz

1qq for all z, z1 P Z.

Notice that this is in fact a relaxation of the notion of strong
isomorphism: indeed, if in addition to being surjective, we
require the maps φX and φY to be injective, then these maps
are forced to being bijective so that the strong notion of
isomorphism is recovered: in this case the map φY ˝ φ

´1
X :

X Ñ Y would be a weight preserving bijection between the
networks X and Y .

For example, networks X “ N1p1q and Y “ N2p12ˆ2q,
with node sets tpu and tq, ru respectively, are weakly (but
not strongly) isomorphic: let Z “ tq, ru, let φY be the
identity map on tq, ru and let φX be the map that sends
q, r to p. Since all the weights are equal to 1, both maps
satisfy the necessary conditions on the weights.

Notation. For any set X , we will denote its cardinality by
cardpXq.

Having relaxed the notion of isomorphism we formulate
a less stringent version of Conjecture 1: namely we conjec-
ture that weak isomorphism is completely characterized by
equality of motif sets.



Conjecture 2 (weak isomorphism conjecture): Let
X,Y P N . Then MnpXq “ MnpY q for all n P N if
and only if X –w Y.

In sharp contrast with Conjecture 1, this conjecture is true.
In order to elicit a connection between the concept of

structural network equivalence — as provided by the notion
of strong isomorphism — and the notion of motifs we weak-
ened the initial notion of (strong) isomorphism to uncover
a precise connection with the equivalence of motif sets.
Of course strong isomorphism implies weak isomorphism,
and weak isomorphism does not in general imply strong
isomorphism, as we saw in the simple examples discussed
above. One may nevertheless wonder whether strong and
weak isomorphism may be related in the following sense:

Could it be that weak isomorphism between two
networks X and Y might imply that some essential
network structures associated to X and Y are
strongly isomorphic?

It turns that the answer to this question is positive:
Theorem 3: Let pX,ωXq, pY, ωY q P N . Then X –w Y if

and only if skelpXq –s skelpY q.
Here skelpXq and skelpY q are called the skeleta of X and

Y , respectively. The skeleton skelpXq of a network X will
turn out to be the smallest network that is weakly isomorphic
to X , where smallest means that its cardinality is minimal.
Thus, if two networks are weakly isomorphic, then one is
essentially a “fattening” of the other.

Comments.

In order to present a proof of Conjecture 2 we need to
introduce some tools that help in organizing and decoding
the structure of space N of all networks with respect to
isomorphism. Intuitively, we are trying to understand whether
certain invariants, the motif sets, are able to discriminate
networks up to weak isomorphism.

The problem of discriminating between networks based
on the binary notion of whether they are exactly weakly
isomorphic or not is rather rigid. To tackle the conjecture
we relax this situation by indirectly introducing a notion of
“almost isomorphism”. This is achieved by considering a
notion of distance between networks which by construction
will be compatible with weak isomorphism: it will turn out
that two networks will be at zero distance if and only if they
are weakly isomorphic. Introducing this distance between
networks not only provides us with a path for proving
Conjecture 2 but also this notion of distance will be crucial in
providing an intuition for what weakly isomorphic networks
“look” like, clarifying the notion of skeleton mentioned
above.

As by-product with practical implications, we will use this
distance to project partial information about a network into
the real line, where comparison is almost trivial. This has
potential applications in the classification of network data.

Finally, we note that apart from weakening the notion of
isomorphism, a natural choice for trying to recover a true
statement from Conjecture 1 is to strengthen the assumptions

on the networks. Under the additional assumption that the
edge weights are unique, the strong conjecture is true.

Remark 4: Our definition of motif sets is inspired by a
definition made by Gromov, termed “curvature classes” in
the context of compact metric spaces [4, Chapter 3].

III. DISCUSSION

As a by-product of our constructions we identify a number
of computable lower bounds for the distance between net-
works, several of which have potential applications in net-
work comparison. Full details will be given in an upcoming
publication.
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