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ABSTRACT

Networks which show the relationships within and between
complex systems are key tools in a variety of current scien-
tific areas. A central aim in network analysis is to find a
suitable metric for network similarity and comparison. We
propose a definition for the space of all networks, and show
that our definition leads to a natural and meaningful notion
of distance between networks. We discuss the computational
complexity involved in computing our network distance, and
develop lower bounds by using invariants of networks that
are significantly simpler to compute. By constructing a wide
range of explicit examples, we show that these lower bounds
are effective in distinguishing between networks. We describe
multiple invariants and prove that all of them are stable in a
quantitative sense.

Index Terms— Networks, motifs, metrics, distances, net-
work signatures

1. INTRODUCTION

Networks which show the relationships within and between
complex systems are key tools in a variety of current research
areas. In the domain of bioinformatics, networks have been
used to represent molecular activity [1], metabolic pathways
[2], functional relations between enzyme clusters [3] and ge-
netic regulation [4, 5]. Networks have been used as a nat-
ural tool for representing brain anatomy and function [6, 7].
Network-based methods also appear in data mining [8], where
the goal is to extract patterns or substructures that appear with
higher frequency than in a randomized network [9, 10, 11].
Whereas the aforementioned networks are typically studied
as static objects, social networks [12, 13] and the World Wide
Web [14, 15] are examples of dynamically evolving networks,
and have also been studied extensively [16, 17].

A central aim in network analysis is to find a suitable met-
ric for network similarity. Such a metric should be able to
compare different networks and test for structural similarity,
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and should be able to do so with reasonably low computa-
tional complexity. Throughout this paper, we aim to con-
tribute to the body of mathematical tools for parsing network
data. Related results in this direction include the framework
of graph kernels, which may be computed between the nodes
of a single graph [18] or between graphs [19]. More details
can be found in [20]. Approaches using graph edit distance
and Levenshtein distance are discussed in [21, 22].

Our goals are to contribute the following: (1) a notion
of distance between directed, weighted networks, (2) a list
of network signatures, or invariants, that can be computed
easily and used to test for dissimilarity between networks, and
(3) efficiently computable lower bounds for the full notion of
distance, based on these invariants.

A full version of the results announced in this paper will
appear elsewhere.

2. THE CONSTRUCTION OF THE METRIC

A recurring notion in our paper is that of the Hausdorff dis-
tance between two subsets of a metric space. Typically we
will be comparing (finite) subsets of the real line, denoted
R. In this case, we denote the Hausdorff distance between
X,Y Ď R by

dRHpX,Y q “ max

"

max
xPX

min
yPY

|x´ y|,max
yPY

min
xPX

|x´ y|

*

.

For any set S we write cardpSq for the cardinality of S.
We denote by F pSq the set of all finite subsets of S. Finally,
we will denote the non-negative real numbers by R`.

LetX be a finite set, and let ωX be a function fromXˆX
to R. By a 1-network, we will mean a pair pX,ωXq. We will
denote the collection of all networks by N .

We will often refer to the points of X as nodes and ωX as
the weight function of X . Pairs of nodes will often be called
edges. The information contained in a network should be pre-
served when we relabel the nodes in a compatible way; we
formalize this idea by introducing the notion of isomorphism
of networks. To say pX,ωXq and pY, ωY q are isomorphic
means that there exists a bijection ϕ : X Ñ Y such that
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Fig. 1. Simple networks.

ωXpx, x
1q “ ωY pϕpxq, ϕpx

1qq for all x, x1 P X . We will
denote an isomorphism between networks by X – Y .

Isomorphism aims to capture the notion that a network
with n nodes is always distinguishable form a network with a
different number of nodes. For networks of the same number
of nodes, isomorphism requires that the weights be respected
as well.

We provide several examples to illustrate our definitions.

Example 1. Networks with one or two nodes will be very
instructive in providing examples and counterexamples, so we
introduce them now with some special terminology.

• Networks with one node: any network with exactly one
node p can be specified by a number α ě 0. Since
1-networks with one node are very special objects, we
reserve the notation Npαq for any of them. From our
definition, it follows that networksNpαq andNpα1q are
isomorphic if and only if α “ α1.

• Given 4 real numbers α, β, δ and γ let Ω “
`

α δ
γ β

˘

.
This matrix induces a 1-networkN2pΩq over two nodes
as in Figure 1. Any network with two nodes can be rep-
resented in this manner. Notice that networks Npαq fl
N2pΩq since they have different numbers of nodes. By
Proposition 4, it will turn out that given Ω,Ω1 P R2ˆ2,
N2pΩq – N2pΩ

1q if and only if there exists a permuta-
tion matrix P of size 2ˆ 2 such that Ω1 “ P ΩPT .

• Any k-by-k matrix Σ P Rkˆk induces a network on
k nodes, which we refer to as NkpΣq. Notice that
NkpΣq – N`pΣ

1q if and only if k “ ` and there exists a
permutation matrix P of size k such that Σ1 “ P ΣPT .

We wish to define a notion of distance on N that is com-
patible with isomorphism. A natural analog is the Gromov-
Hausdorff distance defined between metric spaces [23]. To
adapt that definition for our needs, we first introduce the def-
inition of a correspondence.

2.1. Correspondences and the distortion map

Let pX,ωXq, pY, ωY q be two networks. A correspondence
between these two networks is a set R Ď X ˆ Y such that
for each x P X , there exists y P Y such that px, yq P R, and
for each y P Y , there exists x P X such that px, yq P R. The

collection of all correspondences between X and Y will be
denoted RpX,Y q, abbreviated to R when the context is clear.

Example 2 (1-point correspondence). Let X be a set, and let
tpu be the set with one point. Then there is a unique corre-
spondence R “ tpx, pq : x P Xu between X and tpu.

Let pX,ωXq, pY, ωY q be two networks and let R P R.
The 1-distortion of R is given by

dispRq :“ max
px,yq,px1,y1qPR

|ωXpx, x
1q ´ ωY py, y

1q|.

Then we define dN pX,Y q :“ 1
2 minRPR dispRq.

Remark 3. Two simple but important remarks are the follow-
ing: (1) for anyX,Y P N , RpX,Y q ‰ ∅, and (2) dN pX,Y q
is always bounded. Indeed, X ˆ Y is always a valid corre-
spondence between X and Y . So we have

dN pX,Y q ď
1

2
dispX ˆ Y q

ď
1

2

ˆ

max
x,x1

ωXpx, x
1q ` max

y,y1PY
ωY py, y

1q

˙

ă 8.

When bothX and Y are networks with the same cardinal-
ity, we can use an alternate formulation of distance. Suppose
pX,ωXq, pY, ωY q P N such that cardpXq “ cardpY q. Then
define

dN pX,Y q :“
1

2
min
ϕ

max
x,x1PX

ˇ

ˇωXpx, x
1q´ωY

`

ϕpxq, ϕpx1q
˘
ˇ

ˇ,

where ϕ : X Ñ Y ranges over bijections from X to Y .
A natural question is whether dN and dN agree on pairs of

networks with the same cardinality. It turns out that dN and
dN agree on pairs of networks with two nodes. In general,
these notions are different, as Remark 5 shows.

Proposition 4. Suppose pX,ωXq, pY, ωY q P N such that
cardpXq “ cardpY q “ 2. Then we have dN pX,Y q “
dN pX,Y q. Furthermore, if X “ N2p

`

α δ
β γ

˘

q and Y “

N2p

´

α1 δ1

β1 γ1

¯

q, then we have the explicit formula

dN pX,Y q “
1

2
min pΓ1,Γ2q , where

Γ1 “ max
`

|α´ α1|, |β ´ β1|, |δ ´ δ1|, |γ ´ γ1|
˘

,

Γ2 “ max
`

|α´ γ1|, |γ ´ α1|, |δ ´ β1|, |β ´ δ1|
˘

.

Remark 5. (The case cardpXq “ cardpY q). Assume
pX,ωXq and pY, ωY q are two 1-networks with the same
cardinality. Then we have dN pX,Y q ď dN pX,Y q, but the
inequality may be strict.

It turns out that dN yields a legitimate notion of distance
which is compatible with isomorphism between networks of
the same cardinality. Because we would like to compare net-
works of different cardinalities, our main object of study is
dN . The definition of dN is sensible in the sense that it cap-
tures the notion of a distance:
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Fig. 2. The dN distance between two one-node networks is
simply 1

2 |α´ α
1|.

Theorem 6. dN is a pseudo-metric on N modulo isomor-
phism.

Remark 7. Notice that despite assuring that X – Y implies
that dN pX,Y q “ 0, the theorem above does not preclude
the possibility that there exist X,Y P N non-isomorphic for
which dN pX,Y q “ 0. Consider the networks N “ N1p1q
and N2 “ N2pp

1 1
1 1 qq from Example 1. The two networks

have different cardinalities, so they are not isomorphic. How-
ever, we claim that dN pN,N2q “ 0. To see this, note that by
Example 2, the only correspondence is tpp, qq, pp, rqu. Since
ωN2

pq, rq “ ωN2
pr, qq, we get dN pN,N2q “

1
2 |ωN pp, pq ´

ωN2pq, rq| “
1
2 |1 ´ 1| “ 0. Notice that this example can be

generalized in the following way: let Nk “ Nkp1kˆkq be the
network on k nodes with each edge weight equal to 1. Then
dN pN,Nkq “ 0 for all k P N, but clearly N fl Nk whenever
k ě 2.

Example 8. Now we give some examples.

• For α, α1 ě 0 consider two 1-networks with one node
each: Npαq “ ptpu, αq and Npα1q “ ptp1u, α1q. Then
by Example 2 there is only one correspondence, R “

tpp, p1qu between these two networks, so that dispRq “
|α´α1| and as a result dN pNpαq, Npα1qq “ 1

2 |α´α
1|.

• Let pX,ωXq P N be any network and let Npαq “
ptpu, αq be a network with just one node. Then,
dN pX,Npαqq “

1
2 maxx,x1PX

ˇ

ˇωXpx, x
1q ´ α

ˇ

ˇ. In-
deed, notice that as in the previous example, there
exists a unique correspondence between X and tpu:
the correspondence R “ tpx, pq, x P Xu. The distor-
tion of R is the claimed quantity.

The natural question now is the following: How do we
extend these examples by computing dN for large datasets?
In practical applications we are interested in deciding when
two networks are similar or different. This can be done using
upper or lower bounds for dN , so we should try to judge the
complexity of such calculations.

By Remark 5, we know that it is possible to obtain an up-
per bound on dN , in the case cardpXq “ cardpY q, by using
dN . Solving for dN pX,Y q reduces to minimizing the func-
tion maxx,x1PX fpϕq over all bijections ϕ from X to Y . Here
fpϕq :“ maxx,x1 |ωXpx, x

1q ´ ωY pϕpxq, ϕpx
1qq|. However,

this is an instance of an NP-hard problem known as the bottle-
neck quadratic assignment problem [24]. The structure of the

optimization problem induced by dN is very similar to that
of dN so it seems plausible that computing dN would lead to
NP-hard problems as well.

As such, one is confronted with a complicated computa-
tional problem. The next recourse is to find lower bounds for
dN pX,Y q that can be calculated in polynomial time. This
will lead to the discussions in §2.2 and §2.3.

2.2. Invariants of networks

Often one wants to extract information out of networks in a
perhaps lossy way. An extreme example would be to repre-
sent a given 1-network by a single real number. Intuitively, the
number that we associate to two isomorphic networks should
be the same. We define an R-invariant of 1-networks to be
a map ι : N Ñ R such that for any X,Y P N , if X – Y
then ιpXq “ ιpY q. In what follows, we will construct several
maps and claim that they are invariants.

Example 9. Define the diameter map to be the map diam :
N Ñ R given by pX,ωXq ÞÑ maxx,x1PX |ωXpx, x

1q|. Then
diam is an R-invariant. An application of diam to Example 8
gives an upper bound on dN pX,Y q in the following way:

dN pX,Y q ď dN pX,Np0qq ` dN pNp0q, Y q

“
1

2
pdiampXq ` diampY qq.

We will eventually state that our proposed invariants are
quantitatively stable. This notion is made precise in §2.3 but
for now, we introduce the terminology of metric space valued
invariants. Let pV, dV q be any metric space. A V -valued in-
variant is any map ι : N Ñ V such that ιpX,ωXq “ ιpY, ωY q
whenever X – Y . So diam is our first example of a metric
space valued invariant for V “ R.

Consider the following construction: to each network
pX,ωXq assign the set specpXq :“ tωXpx, x

1q : x, x1 P Xu.
This set is called the spectrum of the network X . So for the
networks in Example 1 we have specpNpαqq “ tαu, and
specpN2pΩqq “ tα, β, γ, δu. This spec map is an invari-
ant. Notice that spec is a map from N into finite subsets of
R, denoted F pRq. Since F pRq can be regarded as a metric
space by endowing it with the Hausdorff distance, spec is an
example of a metric space valued invariant.

Another important construction is the following one
which localizes spec: let pX,ωXq P N and x P X , and
define specoutX pxq :“ tωXpx, x

1q, x1 P Xu Ă R. For ex-
ample, for the network N “ N2pΩq in Figure 1, we have
specoutN ppq “ tα, δu and specoutN pqq “ tβ, γu. Notice that
specpXq “

Ť

xPX specoutX pxq for any network X , thus justi-
fying the claim that this construction localizes spec.

Similarly, we define specinXpxq “ tωXpx
1, xq : x1 P Xu.

Notice that one still has specpXq “
Ť

xPX specinXpxq for any
networkX . The two local versions of spec do not necessarily
coincide, as will be shown in the next example. Regardless,
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Fig. 3. Local spectra can distinguish between networks where
global spectra fails.

it turns out that the global and local versions of spec are all
proper invariants of 1-networks.

Example 10. Here is an application of the localized version
of spec. Consider the networks in Figure 3. Notice that
specpXq “ specpY q “ t1, 3u. In particular, specoutX ppq “
t1, 3u and specoutX pqq “ t1, 3u. On the other hand, specoutY prq “
t1u and specoutY psq “ t3u. Thus X fl Y . Notice that
we also have specinXppq “ t3u, specinXpqq “ t1u and
specinY prq “ specinY psq “ t1, 3u. So as invariants, specin

and specout turn out to be independent.

We emphasize that metric space valued invariants are use-
ful because the stability of these invariants is easy to fomalize.

2.3. Quantitative stability of invariants of networks

Let pV, dV q be a given pseudo-metric space. The V -valued
invariant ι : N Ñ V is said to be quantitatively stable if
there exists a constant L ą 0 such that

dV
`

ιpXq, ιpY q
˘

ď L ¨ dN pX,Y q

for all 1-networks X and Y . The least constant L such that
the above holds for all X,Y P N is the Lipschitz constant of
ι and is denoted Lpιq.

Note that by identifying a non-constant quantitatively
stable V -valued invariant ι, we immediately obtain a lower
bound for the dN distance between any two 1-networks
pX,ωXq and pY, ωY q. Furthermore, given a finite family
ια : N Ñ V , α P A, of non-constant quantitatively stable
invariants, we may obtain the following lower bound for the
distance between networks X and Y :

`

max
αPA

Lpιαq
˘´1

max
αPA

dV pιαpXq, ιαpY qq ď dN pX,Y q.

It is often the case that computing dV pιpXq, ιpY qq is sub-
stantially simpler than computing the dN distance betweenX
and Y (which leads to a possibly NP-hard problem).

Example 11. It is easy to verify that Lpdiamq “ 2, thus, for
all networks X and Y , we have dN pX,Y q ě 1

2

ˇ

ˇdiampXq ´

diampY q
ˇ

ˇ. For example, for the networks X “ N2pp
1 5
2 4 qq

and Y “ Nkp1kˆkq (the all-ones matrix) we have dN pX,Y q ě
1
2 |5´ 1| “ 2, for all k P N.
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Fig. 4. Lower-bounding dN by using global spectra.

Now we state a proposition regarding the stability of
global and local spectrum invariants. These will be of partic-
ular interest for computational purposes.

Proposition 12. Let spec‚ refer to either the out or in version
of local spectrum. Then, for all X,Y P N we have

dN pX,Y q ě
1

2
min
RPR

max
px,yqPR

dRHpspecXpxq, specY pyqq

ě
1

2
dRHpspecpXq, specpY qq.

Corollary 13. Lpspec‚q “ Lpspecq “ 2. Here spec‚ de-
notes either of the local versions of spec.

Example 14. Consider the networks in Figure 4. By Corol-
lary 13, we may calculate a lower bound for dN pX,Y q by
simply computing the Hausdorff distance between specpXq
and specpY q, and dividing by 2. In this example, specpXq “
t1, 2u and specpY q “ t1, 2, 3u. Thus dRHpspecpXq, specpY qq “
1, and dN pX,Y q ě 1

2 .

Computing the lower bound involving local spectra re-
quires solving a bottleneck linear assignment problem over
the set of all correspondences between X and Y . This can be
solved in polynomial time. The second lower bound stipulates
computing the Hausdorff distance on R between the (global)
spectra of X and Y – a computation which can be carried out
in (smaller) polynomial time as well.

3. DISCUSSION

We introduced a model for the space of all networks, and
defined a notion of isomorphism between any two networks.
Then we proposed a notion of distance compatible with this
notion of isomorphism and verified that our definition actually
does induce a pseudometric. Next, we took on the practical
question of estimating and computing this distance. Direct
computation of dN pX,Y q appears to lead to NP-hard prob-
lems in general.

We constructed multiple quantitatively stable invariants,
with examples illustrating their behavior, and quantified their
stability. Even though not expounded in this paper, there ex-
ists an algorithm of complexity Opn2 ˆ m2q that uses local
spectra to compute a lower bound for dN .
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[24] Panos M. Pardalos and Henry Wolkowicz, Eds.,
Quadratic assignment and related problems, DIMACS
Series in Discrete Mathematics and Theoretical Com-
puter Science, 16. American Mathematical Society,
Providence, RI, 1994.


	 Introduction
	 The construction of the metric
	 Correspondences and the distortion map
	 Invariants of networks
	 Quantitative stability of invariants of networks

	 Discussion
	 References

