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persistence on directed networks satisfying a local condition that we call square-freeness. We prove
stability of PPH by utilizing a separate theory of homotopy of digraphs that is compatible with
path homology. Finally, we study computational aspects of PPH, and derive an algorithm showing
that over field coefficients, computing PPH requires the same worst case running time as standard
persistent homology.

E-mail address: chowdhury.57@osu.edu,memoli@math.osu.edu.
Date: July 13, 2017.



PERSISTENT PATH HOMOLOGY OF DIRECTED NETWORKS 1

1. Introduction

In recent years, the advent of sophisticated data mining tools has led to rapid growth of net-
work datasets in the sciences. The recently completed Human Connectome Project (2010-2015,
http://www.humanconnectome.org/), aimed at mapping the network structure of the human
brain, is one example of a large-scale network data acquisition project. The availability of such net-
work data coincides with a time of steady growth of the mathematical theory of persistent homology,
which aims to study the “shape” of data and thus appears to be a good candidate for analysing net-
work structure. This connection is being developed rapidly [SGB15, SGBB16, PET+14, PSDV13,
GPCI15, GGB16, DHL+16, MV16, CM16b], but this exploration is far from complete.

There are two problems that arise when studying directed networks—complete graphs with asym-
metric, real-valued weights—via persistent homology: (1) conventional persistence methods take
only metric space (i.e. symmetric) or point cloud (i.e. Euclidean) data as input, and (2) these
methods typically factor the data through a filtration of simplicial complexes, which are themselves
undirected objects. Thus the challenge is to develop persistent homology methods that accept
asymmetric data as input, and associate homological signatures without forcing symmetry on the
data at any point in the pipeline.

This problem has received some attention in recent literature. Some notable approaches in-
volve computing the homology and Euler characteristic of directed clique complexes—see [DHL+16,
MV16] for theoretical and algorithmic details. A persistent homology framework for directed clique
complexes was introduced in [Tur16], albeit without an implementation. Yet another approach,
using asymmetry-sensitive simplicial complexes called Dowker complexes, has appeared with ex-
perimental details in [CM16b].

Contributions. In this paper, we address the challenge presented above by constructing the per-
sistent path homology (PPH) method for assigning asymmetry-sensitive persistent homology sig-
natures to network data. The key property of PPH is that it factors the input data through a
filtration of directed graphs, which maintains the asymmetry in the input data. By characterizing
the 1-dimensional PPH of a family of directed cycle networks, we provide evidence that PPH can
appropriately detect directionality information in data.

The main theoretical foundations from which PPH is derived can be traced back to work of
Barcelo et al., who developed a notion of homotopy for (undirected) graphs [BKLW01, BBLL06].
This work has recently been extended by Grigor’yan et al. [GLMY14] to a notion of homotopy for
directed graphs. Moreover, they proved that this notion of homotopy is consistent with a homology
theory on digraphs called path homology that they had developed earlier [GLMY12]. It is this
notion of path homology that we extend to obtain PPH.

Two main challenges that we faced when attempting to establish the viability of PPH as a
data analysis tool were in proving that: (1) PPH is stable to perturbations in the input data,
and (2) PPH can be implemented via an algorithm with reasonable complexity. In the persistence
literature, standard methods for proving stability invoke results that hold for simplicial complexes.
These results are not available in the PPH setting; however, by invoking results regarding homotopy
of digraphs obtained in [GLMY14], we were still able to prove stability of PPH. The implementation
of PPH presented an additional challenge because the chain complex of vector spaces at the core
of the persistence machinery does not come equipped with a natural choice of basis. This is in
contrast to the setting of simplicial complexes, where the list of all simplices forms a natural basis
for the associated chain complex. We resolve this challenge by proving that the required basis can
be obtained by the same process of left-to-right Gaussian elimination on the columns of boundary
matrices as that used in the general persistent homology algorithm. This observation shows that
by using the general persistent homology algorithm, we can compute PPH without any additional
overhead for finding the basis.

http://www.humanconnectome.org/
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Organization of the paper. §3 contains the necessary background on persistent homology, net-
works, and the network distance dN . §2 contains a description of path homology. In §4 we combine
ingredients from the preceding sections to define PPH and prove its stability. In §5 we describe a
procedure for implementing PPH in practice.

Notation. We denote the nonempty elements of the power set of a set X by Pow(X), and use
the convention that the empty set is excluded from Pow(X). We write Z+,R+ to denote the
nonnegative integers and reals, respectively. We will write R to denote the extended real numbers
[−∞,∞]. We fix a field K and use it throughout the paper. The identity map on a set X is denoted
idX . Given vector spaces V, V ′, we write V ∼= V ′ to denote isomorphism of vector spaces. Given
a finite set S, we write K[S] to denote the free vector space over K generated by the elements
of S. When we have a sequence of maps (fi)i∈I indexed by a set I, we will often refer to them
collectively as f•, without specifying an index. Given sets A,B, a map f : A → B, and subsets
SA ⊆ A,SB ⊆ B, we will write f(SA) ⊆ SB to mean that f(s) ∈ SB for each s ∈ SA.

In this paper, a digraph is a pair G = (X,E), where X is a finite set (the vertices) and E is a
subset of X ×X (the edges). We always consider digraphs without self-loops. We also make the
following remark on notation: given x, x′ ∈ X for a digraph G = (X,E), we write x

→
= x′ to mean

either x = x′, or (x, x′) ∈ E.

2. Path homology of digraphs

Homology is the formal algebraic construction at the center of our work. For our purposes, we
define homology in the setting of general vector spaces, and refer the reader to [Mun84, §1.13] for
additional details. Fix a field K. A chain complex is defined to be a sequence of vector spaces
(Ck)k∈Z over K and boundary maps (∂k : Ck → Ck−1)k∈Z satisfying the condition ∂k−1 ◦ ∂k = 0 for
each k ∈ Z. We often denote a chain complex as C = (Ck, ∂k)k∈Z. Given a chain complex C and
any k ∈ Z+, one defines the following subspaces:

Zk(C) := ker(∂k) = {c ∈ Ck : ∂k(c) = 0} , the k-cycles,

Bk(C) := im(∂k+1) = {c ∈ Ck : c = ∂k+1(b) for some b ∈ Ck+1} , the k-boundaries.

The quotient vector space Hk(C) := Zk(C)/Bk(C) is called the k-th homology vector space of the
chain complex C. The dimension of Hk(C) is called the k-th Betti number of C, denoted βk(C).

Given two chain complexes C = (Ck, ∂k)k∈Z and C′ = (C ′k, ∂
′
k)k∈Z, a chain map ϕ : C → C′ is a

family of morphisms (ϕk : Ck → C ′k)k∈Z+ such that ∂′k ◦ ϕk = ϕk−1 ◦ ∂k for each k ∈ Z+. Such a
chain map induces a family of linear maps (ϕ#)k : Hk(C)→ Hk(C′) for each k ∈ Z+ [Mun84].

In what follows, we summarize and condense some concepts that appeared in [GLMY12], and
attempt to preserve the original notation wherever possible.

2.1. Elementary paths on a set. Given a finite set X and any integer p ∈ Z+, an elementary
p-path over X is a sequence [x0, . . . , xp] of p + 1 elements of X. For each p ∈ Z+, the free vector
space consisting of all formal linear combinations of elementary p-paths over X with coefficients in
K is denoted Λp = Λp(X) = Λp(X,K). One also defines Λ−1 := K and Λ−2 := {0}. Next, for any
p ∈ Z+, one defines a linear map ∂nr

p : Λp → Λp−1 to be the linearization of the following map on
the generators of Λp:

∂nr
p ([x0, . . . , xp]) :=

p∑
i=0

(−1)i[x0, . . . , x̂i, . . . , xp], for each elementary p-path [x0, . . . , xp] ∈ Λp.

Here x̂i denotes omission of xi from the sequence. The maps ∂nr
• are referred to as the non-regular

boundary maps. For p = −1, one defines ∂nr
−1 : Λ−1 → Λ−2 to be the zero map. Then ∂nr

p+1 ◦∂nr
p = 0

for any integer p ≥ −1 [GMY15, Lemma 2.2]. It follows that (Λp, ∂
nr
p )p∈Z+ is a chain complex.
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For notational convenience, we will often drop the square brackets and commas and write paths
of the form [a, b, c] as abc. We use this convention in the next example.

Example 1 (Paths on a double edge). We will soon explain the interaction between paths on a
set and the edges on a digraph. First consider a digraph on a vertex set Y = {a, b} as in Figure 1.
Notice that there is a legitimate “path” on this digraph of the form aba, obtained by following the
directions of the edges. But notice that applying ∂nr

2 to the 2-path aba yields ∂nr
2 (aba) = ba−aa+ab,

and aa is not a valid path on this particular digraph (self-loops are disallowed). To handle situations
like this, one needs to consider regular paths, which are explained in the next section.

a b

Figure 1. A two-node
digraph on the vertex
set Y = {a, b}.

2.2. Regular paths on a set. For each p ∈ Z+, an elementary p-path
[x0, . . . , xp] is called regular if xi 6= xi+1 for each 0 ≤ i ≤ p − 1, and
irregular otherwise. Then for each p ∈ Z+, one defines:

Rp = Rp(X,K) := K
[
{[x0, . . . , xp] : [x0, . . . , xp] is regular}

]
Ip = Ip(X,K) := K

[
{[x0, . . . , xp] : [x0, . . . , xp] is irregular}

]
.

One can further verify that ∂nr
p (Ip) ⊆ Ip−1 [GMY15, Lemma 2.6], and so ∂nr

p is well-defined on
Λp/Ip. Since Rp ∼= Λp/Ip via a natural linear isomorphism, one can define ∂p : Rp → Rp−1 as the
pullback of ∂nr

p via this isomorphism [GMY15, Definition 2.7]. Then ∂p is referred to as the regular
boundary map in dimension p, where p ∈ Z+. Now we obtain a new chain complex (Rp, ∂p)p∈Z+ .

Example 2 (Regular paths on a double edge). Consider again the digraph in Figure 1. Applying
the regular boundary map to the 2-path aba yields ∂2(aba) = ba+ ab. This example illustrates the
following general principle: Irregular paths arising from an application of ∂• are treated as zeros.

2.3. Allowed paths on digraphs. We now expand on the notion of paths on a set to discuss
paths on a digraph. We follow the intuition developed in Examples 1 and 2.

Let G = (X,E) be a digraph. For each p ∈ Z+, one defines an elementary p-path [x0, . . . , xp] on
X to be allowed if (xi, xi+1) ∈ E for each 0 ≤ i ≤ p − 1. For each p ∈ Z+, the free vector space
on the collection of allowed p-paths on (X,E) is denoted Ap = Ap(G) = Ap(X,E,K), and is called
the space of allowed p-paths. One further defines A−1 := K and A−2 := {0}.

a b

cd

w x

yz

Figure 2. Two types
of square digraphs.

2.4. ∂-invariant paths and path homology. The allowed paths do
not form a chain complex, because the image of an allowed path under
∂ need not be allowed. This is rectified as follows. Given a digraph
G = (X,E) and any p ∈ Z+, the space of ∂-invariant p-paths on G is
defined to be the following subspace of Ap(G):

Ωp = Ωp(G) = Ωp(X,E,K) := {c ∈ Ap : ∂p(c) ∈ Ap−1} .
One further defines Ω−1 := A−1

∼= K and Ω−2 := A−2 = {0}. Now it
follows by the definitions that im(∂p(Ωp)) ⊆ Ωp−1 for any integer p ≥ −1.
Thus we have a chain complex:

. . .
∂3−→ Ω2

∂2−→ Ω1
∂1−→ Ω0

∂0−→ K ∂−1−−→ 0

For each p ∈ Z+, the p-dimensional path homology groups of G =
(X,E) are defined as:

HΞ
p (G) = HΞ

p (X,E,K) := ker(∂p)/ im(∂p+1).

Example 3 (Paths on squares). We illustrate the construction of Ω• for the digraphs in Figure 2.
For 0 ≤ p ≤ 2, we have the following vector spaces of ∂-invariant paths:

Ω0(GM ) = K[{a, b, c, d}] Ω0(GN ) = K[{w, x, y, z}]
Ω1(GM ) = K[{ab, cb, cd, ad}] Ω1(GN ) = K[{wx, xy, zy, wz}]
Ω2(GM ) = {0} Ω2(GN ) = K[{wxy − wzy}]
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The crux of the Ω• construction lies in understanding Ω2(GN ). Note that even though ∂GN2 (wxy),

∂GN2 (wzy) 6∈ Ω2(GN ) (because wy 6∈ A1(GN )), we still have:

∂GN2 (wxy − wzy) = xy − wy + wx− zy + wy − wz ∈ A1(GN ).

Elementary calculations show that dim(HΞ
1 (GM )) = 1, and dim(HΞ

1 (GN )) = 0. Thus path
homology can successfully distinguish between these two squares.

To compare this with a simplicial approach, consider the directed clique complex homology
studied in [DHL+16, MV16, Tur16]. Given a digraph G = (X,E), the directed clique complex is
defined to be the ordered simplicial complex [Mun84, p. 76] given by writing:

FG := X ∪ {(x0, . . . , xp) : (xi, xj) ∈ E for all 0 ≤ i < j ≤ p} .
Here we use parentheses to denote ordered simplices. For the squares in Figure 2, we have:

FGM = {a, b, c, d, ab, cb, cd, ad} and FGN = {w, x, y, z, wx, xy, wz, zy} ,
and so their simplicial homologies are equal.

Remark 4 (The challenge of finding a natural basis for Ω•). The digraph GN in Example 3
is a minimal example showing that it is nontrivial to compute bases for the vector spaces Ω•.
Specifically, while it is trivial to read off bases for the allowed paths A• from a digraph, one needs
to consider linear combinations of allowed paths in a systematic manner to obtain bases for the
∂-invariant paths.

Contrast this with the setting of simplicial homology: here the simplices themselves form bases
for the associated chain complex, so there is no need for an extra preprocessing step. Thus when
using PPH for asymmetric data, it is important to consider the trade-off between greater sensitivity
to asymmetry and increased computational cost.

We derive a procedure for systematically computing bases for Ω• in §5.

2.5. Homotopy of digraphs. The constructions of path homology are accompanied by a theory
of homotopy developed in [GLMY14]. An illustrated example is provided in Figure 3.

Figure 3. Directed d-
cubes that are all homo-
topy equivalent.

Let GX = (X,EX), GY = (Y,EY ) be two digraphs. The product di-
graph GX ×GY = (X × Y,EX×Y ) is defined as follows:

X × Y := {(x, y) : x ∈ X, y ∈ Y }, and

EX×Y := {((x, y), (x′, y′)) ∈ (X × Y )2 : x = x′ and (y, y′) ∈ EY ,
or y = y′ and (x, x′) ∈ EX}.

Next, the line digraphs I+ and I− are defined to be the two-point
digraphs with vertices {0, 1} and edges (0, 1) and (1, 0), respectively. Two
digraph maps f, g : GX → GY are one-step homotopic if there exists a
digraph map F : GX × I → GY , where I ∈ {I+, I−}, such that:

F |GX×{0} = f and F |GX×{1} = g.

This condition is equivalent to requiring:

f(x)
→
= g(x) for all x ∈ X, or g(x)

→
= f(x) for all x ∈ X.

Moreover, f and g are homotopic, denoted f ' g, if there is a finite
sequence of digraph maps f0 = f, f1, . . . , fn = g : GX → GY such that
fi, fi+1 are one-step homotopic for each 0 ≤ i ≤ n− 1. The digraphs GX
and GY are homotopy equivalent if there exist digraph maps f : GX →
GY and g : GY → GX such that g ◦ f ' idGX and f ◦ g ' idGY .

An example of digraph homotopy equivalence is illustrated in Figure 3. Informally, the homotopy
equivalence is given by “crushing” the orange arrows according to the directions they mark. This
operation crushes the 4-tesseract to the 3-cube, to the 2-square, to the line, and finally to the point.
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The concept of homotopy yields the following theorem on path homology groups:

Theorem 5 (Theorem 3.3, [GLMY14]). Let G,G′ be two digraphs.

(1) Let f, g : G→ G′ be two homotopic digraph maps. Then these maps induce identical maps
on homology vector spaces. More precisely, the following maps are identical for each p ∈ Z+:

(f#)p : Hp(G)→ Hp(G
′) (g#)p : Hp(G)→ Hp(G

′).

(2) If G and G′ are homotopy equivalent, then Hp(G) ∼= Hp(G
′) for each p ∈ Z+.

3. Background on Persistent Homology and Networks

A persistent vector space is defined to be a family of vector spaces and linear maps {U δ
µδ,δ′−−−→

U δ
′}δ≤δ′∈R such that: (1) µδ,δ is the identity for each δ ∈ R, and (2) µδ,δ′′ = µδ′,δ′′ ◦ µδ,δ′ for each

δ ≤ δ′ ≤ δ′′ ∈ R. Persistent homology refers to the special case when we have a family of homology
vector spaces and induced linear maps arising from chain complexes and chain maps.

By the classification results in [CZCG05, §5.2], it is possible to associate a full invariant called
a persistence barcode to each persistent vector space. This barcode is a multiset of persistence
intervals, and is represented as a set of lines over a single axis. The barcode of a persistent vector
space V is denoted Pers(V). An equivalent representation is the persistence diagram, which is as a

multiset of points lying on or above the diagonal in R2
, counted with multiplicity. More specifically,

Dgm(V) :=
[
(δi, δj+1) ∈ R2

: [δi, δj+1) ∈ Pers(V)
]
,

where the multiplicity of (δi, δj+1) ∈ R2
is given by the multiplicity of [δi, δj+1) ∈ Pers(V).

Persistence diagrams can be compared using the bottleneck distance, which we denote by dB.
Details about this distance, as well as the other material related to persistent homology, can be
found in [CDSGO12]. Numerous other formulations of the material presented above can be found
in [ELZ02, ZC05, CDS10, EH10, Ede14, BL14, EJM15].

Remark 6. From the definition of bottleneck distance, it follows that points in a persistence
diagram Dgm(V) that belong to the diagonal do not contribute to the bottleneck distance between
Dgm(V) and another diagram Dgm(U). Thus whenever we describe a persistence diagram as being
trivial, we mean that either it is empty, or it does not have any off-diagonal points.

3.1. Interleavings. Let U ,V be two persistent vector spaces with linear maps sδ,δ′ : U δ → U δ+ε

and tδ,δ′ : V δ → V δ+ε, respectively, for each δ ≤ δ′ ∈ R. Given ε ≥ 0, U and V are said to be

ε-interleaved [CCSG+09, BL14] if there exist two families of linear maps {ϕδ : V δ → U δ+ε}δ∈R and
{ψδ : U δ → V δ+ε}δ∈R such that: (1) ϕδ′ ◦ sδ,δ′ = tδ+ε,δ′+ε ◦ ϕδ, (2) ψδ′ ◦ tδ,δ′ = sδ+ε,δ′+ε ◦ ψδ, (3)
sδ,δ+2ε = ψδ+ε◦ϕδ, and (4) tδ,δ+2ε = ϕδ+ε◦ψδ for each δ ≤ δ′ ∈ R. The Algebraic Stability Theorem
of [CCSG+09] guarantees that if U and V are ε-interleaved, then dB(Dgm(U),Dgm(V)) ≤ ε. Details
on these results are provided in Appendix B.

3.2. Networks. We follow the framework of [CMRS13, CMRS14]. A network is a finite set X
together with a weight function AX : X × X → R. This can be interpreted as a complete graph
with asymmetric, real-valued weights, or alternatively, as a generalization of a finite metric space.
Note that AX is not required to satisfy the triangle inequality or any symmetry condition. The
collection of all such networks is denoted N .

Given two networks (X,AX), (Y,AY ) ∈ N and R ⊆ X×Y any nonempty relation, the distortion
of R is defined as:

dis(R) := max
(x,y),(x′,y′)∈R

|AX(x, x′)−AY (y, y′)|.

A correspondence between X and Y is a relation R between X and Y such that πX(R) = X and
πY (R) = Y , where πX : X × Y → X and πY : X × Y → Y denote the natural projections. The
collection of all correspondences between X and Y will be denoted R(X,Y ).
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Following prior work in [CMRS14], the network distance dN : N ×N → R+ is then defined as:

dN (X,Y ) := 1
2 min
R∈R(X,Y )

dis(R).

It can be verified that dN as defined above is a pseudometric, and that the networks at 0-distance
can be completely characterized [CM15, CM16a]. Next we wish to state a reformulation of dN that
will aid our proofs. First we define the distortion of a map between two networks. Given any
(X,AX), (Y,AY ) ∈ N and a map ϕ : (X,AX)→ (Y,AY ), the distortion of ϕ is defined as:

dis(ϕ) := max
x,x′∈X

|AX(x, x′)−AY (ϕ(x), ϕ(x′))|.

Given maps ϕ : (X,ωX)→ (Y, ωY ) and ψ : (Y, ωY )→ (X,ωX), we define two co-distortion terms:

CX,Y (ϕ,ψ) := max
(x,y)∈X×Y

|ωX(x, ψ(y))− ωY (ϕ(x), y)|,

CY,X(ψ,ϕ) := max
(y,x)∈Y×X

|ωY (y, ϕ(x))− ωX(ψ(y), x)|.

Proposition 7 ([CM16b, Proposition 4]). Let (X,AX), (Y,AY ) ∈ N . Then,

dN (X,Y ) = 1
2 min{max(dis(ϕ),dis(ψ), CX,Y (ϕ,ψ), CY,X(ψ,ϕ)) : ϕ : X → Y, ψ : Y → X any maps}.

Remark 8. Proposition 7 is analogous to a result of Kalton and Ostrovskii [KO97, Theorem 2.1]
where—instead of dN—one has the Gromov-Hausdorff distance between metric spaces. We remark
that when restricted to the special case of networks that are also metric spaces, the network distance
dN agrees with the Gromov-Hausdorff distance. Details on the Gromov-Hausdorff distance can be
found in [BBI01].

An important remark is that in the Kalton-Ostrovskii formulation, there is only one co-distortion
term. When Proposition 7 is applied to metric spaces, the two co-distortion terms become equal
by symmetry, and thus the Kalton-Ostrovskii formulation is recovered. But a priori, the lack of
symmetry in the network setting requires us to consider both terms.

3.3. Rips and Dowker complexes. A standard tool in persistent homology is the Vietoris-
Rips complex. For any network (X,AX) and any δ ∈ R, this is defined as Rδ

X := {σ ⊆ X :
maxx,x′∈X AX(x, x′) ≤ δ}. In [CM16b], it was shown that Rips complexes are insensitive to asym-
metry in data. The Dowker sink/source complexes introduced in [CM16b] were, however, shown to
be sensitive to asymmetry in data. The sink complex is defined as Dsi

δ,X := {σ ∈ X : AX(x, p) ≤
δ for all x ∈ σ, for some p ∈ X}, and the source complex is defined analogously, by swapping the
positions of x and p. It was shown in [CM16b] that both types of complexes produce the same
persistence diagram. The k-dimensional Dowker persistence diagram of (X,AX) is then denoted
DgmD

k (X). In the setting of metric spaces, the Dowker complex coincides with the Čech complex.
In such cases, we refer to Dowker/Čech persistence interchangeably.

4. The Persistent Path Homology of a Network

Let X = (X,AX) ∈ N . For any δ ∈ R, the digraph Gδ
X = (X,EδX) is defined as follows:

EδX := {(x, x′) ∈ X ×X : x 6= x′, AX(x, x′) ≤ δ}.
Note that for any δ′ ≥ δ ∈ R, we have a natural inclusion map Gδ

X ↪→ Gδ′
X . Thus we may associate

to X the digraph filtration {Gδ
X ↪→ Gδ′

X }δ≤δ′∈R.
The functoriality of the path homology construction (Appendix A, Proposition 18) enables us to

obtain a persistent vector space from a digraph filtration. Thus we make the following definition:

Definition 1. Let G = {Gδ ↪→ Gδ′}δ≤δ′∈R be a digraph filtration. Then for each p ∈ Z+, we define
the p-dimensional persistent path homology of G to be the following persistent vector space:

HΞ
p (G) := {HΞ

p (Gδ)
(ιδ,δ′ )#−−−−→ HΞ

p (Gδ′)}δ≤δ′∈R.
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The diagram associated to HΞ
p (G) is denoted DgmΞ

p (G). In particular, given (X,AX) ∈ N and its

digraph filtration, we write DgmΞ
p (X) to denote its path persistence diagram in dimension p.

The first main theorem of this section, which shows that the persistent path homology construc-
tion is stable to perturbations of input data, and hence amenable to data analysis, is below:

Theorem 9 (Stability). Let X = (X,AX),Y = (Y,AY ) ∈ N . Let p ∈ Z+. Then,

dB(Dgmp(X ),Dgmp(Y)) ≤ 2dN (X ,Y).

The proof uses results on the interleaving distance, for which we provide details in Appendix B.

Proof of Theorem 9. Let η = 2dN (X ,Y). By virtue of Proposition 7, we obtain maps ϕ : X → Y
and ψ : Y → X such that dis(ϕ) ≤ η,dis(ψ) ≤ η, CX,Y (ϕ,ψ) ≤ η, and CY,X(ψ,ϕ) ≤ η.

Claim 1. For each δ ∈ R, the map ϕ induces a digraph map ϕδ : Gδ
X → Gδ+η

Y given by x 7→ ϕ(x),

and the map ψ induces a digraph map ψδ : Gδ
Y → Gδ+η

X given by y 7→ ψ(y).

Proof. Let δ ∈ R, and let (x, x′) ∈ EδX . Then AX(x, x′) ≤ δ. Because dis(ϕ) ≤ η, we have

AY (ϕ(x), ϕ(x′)) ≤ δ + η. Thus (ϕ(x), ϕ(x′)) ∈ Eδ+ηY , and so ϕδ is a digraph map. Similarly, ψδ is
a digraph map. Since δ ∈ R was arbitrary, the claim now follows. �

Claim 2. Let δ ≤ δ′ ∈ R, and let sδ,δ′ , tδ+η,δ′+η denote the digraph inclusion maps Gδ
X ↪→ Gδ′

X and

Gδ+η
Y ↪→ Gδ′+η

Y , respectively. Then ϕδ′ ◦ sδ,δ′ and tδ+η,δ′+η ◦ ϕδ are one-step homotopic.

Proof. Let x ∈ X. We wish to show ϕδ′(sδ,δ′(x))
→
= tδ+η,δ′+η(ϕδ(x)). But notice that:

ϕδ′(sδ,δ′(x)) = ϕδ′(x) = ϕ(x),

where the second equality is by definition of ϕδ′ and the first equality occurs because sδ,δ′ is the
inclusion map. Similarly, tδ+η,δ′+η(ϕδ(x)) = tδ+η,δ′+η(ϕ(x)) = ϕ(x). Thus we obtain ϕδ′(sδ,δ′(x))

→
=

tδ+η,δ′+η(ϕδ(x)). Since x was arbitrary, it follows that ϕδ′ ◦ sδ,δ′ and tδ+η,δ′+η ◦ ϕδ are one-step
homotopic. �

Claim 3. Let δ ∈ R, and let sδ,δ+2η denote the digraph inclusion map Gδ
X ↪→ Gδ+2η

X . Then sδ,δ+2η

and ψδ+η ◦ ϕδ are one-step homotopic.

Proof. Recall that CX,Y (ϕ,ψ) ≤ η, which means that for any x ∈ X, y ∈ Y , we have:

|AX(x, ψ(y))−AY (ϕ(x), y))| ≤ η.

Let x ∈ X, and let y = ϕ(x). Notice that sδ,δ+2η(x) = x and ψδ+η(ϕδ(x)) = ψ(ϕ(x)). Also note:

AX(x, ψ(ϕ(x))) ≤ η +AY (ϕ(x), ϕ(x)) ≤ δ + 2η.

Thus sδ,δ+2η(x)
→
= ψδ+η(ϕδ(x)), and this holds for any x ∈ X. The claim follows. �

By combining the preceding claims and Theorem 5, we obtain the following, for each p ∈ Z+:

((sδ,δ+2η)#)p = ((ψδ+η ◦ ϕδ)#)p, ((ϕδ′ ◦ sδ,δ′)#)p = ((tδ+η,δ′+η ◦ ϕδ)#)p.

By invoking functoriality of path homology (Proposition 18), we obtain:

((sδ,δ+2η)#)p = ((ψδ+η)#)p ◦ ((ϕδ)#)p, ((ϕδ′)#)p ◦ (sδ,δ′)#)p = ((tδ+η,δ′+η)#)p ◦ ((ϕδ)#)p.

By using similar arguments, we can also obtain, for each p ∈ Z+,

((tδ,δ+2η)#)p = ((ϕδ+η)#)p ◦ ((ψδ)#)p, ((ψδ′)#)p ◦ (tδ,δ′)#)p = ((sδ+η,δ′+η)#)p ◦ ((ψδ)#)p.

ThusHΞ
p (X ) andHΞ

p (Y) are η-interleaved, for each p ∈ Z+. The result now follows by an application
of the Algebraic Stability Theorem (see §3.1, also Theorem 19). �
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Remark 10. The preceding stability result has analogous counterparts in the setting of Rips and
Dowker persistence for asymmetric networks. The key difference in the proof technique is that in
the Rips/Dowker settings one can use classical results about contiguous simplicial maps, whereas
in this setting, we are required to use results on the homotopy of digraphs that were recently
developed in [GLMY14].

Figure 4. Left: Gδ
23

is (digraph) homotopy
equivalent to a point at δ = 1, as can be seen by
collapsing points along the orange lines. Right:
Dsi
δ,23

becomes contractible at δ =
√

2, but has
nontrivial homology in dimension 2 that persists
across the interval [1,

√
2).

Having defined PPH, we now answer some
fundamental questions related to its charac-
terization. We show that PPH agrees with
Čech/Dowker persistence on metric spaces in
dimension 1, but not necessarily in higher di-
mensions. We also show that in the asymmetric
case, PPH and Dowker agree in dimension 1 if
a certain local condition is satisfied.

Example 11 (PPH vs Dowker for metric
n-cubes). In the setting of metric spaces,
PPH is generally different from Dowker per-
sistence in dimensions ≥ 2. To see this,
consider Rn equipped with the Euclidean
distance for n ≥ 3. Define 2n :=
{(i1, i2, . . . , in) : ij ∈ {0, 1} ∀ 1 ≤ j ≤ n} . Then

Gδ
2n

has no edges for δ < 1, and for δ = 1, it
has precisely an edge between any two points of
2n that differ on a single coordinate. But at δ = 1, Gδ

2n
is homotopy equivalent to Gδ

2n−1
: the

homotopy equivalence is given by collapsing points that differ exactly on the nth coordinate (see
Figure 4). Proceeding recursively, we see that Gδ

2n−1
is contractible at δ = 1. However, Dsi(2n)

is not contractible at δ = 1. Moreover, an explicit verification for the n = 3 case shows that
DgmD

2 (23) consists of the point (1,
√

2) with multiplicity 7. Thus DgmD
2 (23) 6= DgmΞ

2 (23).

Theorem 12. Let X = (X,AX) ∈ N be a symmetric network, and fix K = Z/pZ for some prime
p. Then DgmΞ

1 (X ) = DgmD
1 (X ).

The preceding result shows that on metric spaces, PPH agrees with Dowker persistence in di-
mension 1. The converse implication is not true: in §4.1, we provide a family of highly asymmetric
networks for which PPH agrees with Dowker persistence in dimension 1. On the other hand, the
examples in Figure 5 show that equality in dimension 1 does not necessarily hold for asymmetric
networks. Moreover, it turns out that the four-point configurations illustrated in Figure 5 can be
used to give another partial characterization of the networks for which PPH and Dowker persistence
do agree in dimension 1. We present this statement next.

x1

x2

x3
x4

X

y1

y2

y3
y4

Y

x1 x2 x3 x4

x1

x2

x3

x4

0 1 2 2

2 0 2 2

2 1 0 2

1 2 1 0

y1 y2 y3 y4

y1

y2

y3

y4

0 1 2 1

2 0 2 2

2 1 0 1

2 2 2 0

Figure 5. Working over Z/2Z coefficients, we find that DgmΞ
1 (X ) and DgmD

1 (Y)
are trivial, whereas DgmD

1 (X ) = DgmΞ
1 (Y) = {(1, 2)} = {(1, 2)}.



PERSISTENT PATH HOMOLOGY OF DIRECTED NETWORKS 9

Definition 2 (Squares, triangles, and double edges). Let G be a finite digraph. Then we define
the following local configurations of edges between distinct nodes a, b, c, d:

• A double edge is a pair of edges (a, b), (b, a).
• A triangle is a set of edges (a, b), (b, c), (a, c).
• A short square is a set of edges (a, b), (a, d), (c, b), (c, d) such that neither of (a, c), (c, a),

(b, d), (d, b) is an edge.
• A long square is a set of edges (a, b), (b, c), (a, d), (d, c) such that (a, c) is not an edge.

a b a b

c

a b

cd

a b

cd

Finally, we define a network (X,AX) to be square-free if Gδ
X does not contain a four-point

subset whose induced subgraph is a short or long square, for any δ ∈ R. An important observation
is that to be a square, the subgraph induced by a four-point subset cannot just include one of the
configurations pictured above; it must exclude diagonal edges as well.

Theorem 13. Let X = (X,AX) ∈ N be a square-free network, and fix K = Z/pZ for some prime
p. Then DgmΞ

1 (X ) = DgmD
1 (X ).

Remark 14. The proofs of Theorems 12 and 13 both require an argument where simplices are
paired up—this requires us to use Z/pZ coefficients in both theorem statements.

x1 x2

x3

x4x5

x6

1

1

1

1

1

1

x1 x2 x3 x4 x5 x6

x1

x2

x3

x4

x5

x6

0 1 2 3 4 5

5 0 1 2 3 4

4 5 0 1 2 3

3 4 5 0 1 2

2 3 4 5 0 1

1 2 3 4 5 0

Figure 6. A cycle net-
work on 6 nodes, along
with its weight matrix.
Note that the weights are
highly asymmetric.

4.1. An application: Characterizing the diagrams of cycle
networks. For each n ∈ N, consider the weighted, directed graph
(Xn, En,WEn) with vertex set Xn := {x1, x2, . . . , xn}, edge set
En := {(x1, x2), (x2, x3), . . . , (xn−1, xn), (xn, x1)}, and edge weights
WEn : En → R given by writing WEn(e) = 1 for each e ∈ En. Next
let AGn : Xn × Xn → R denote the shortest path distance induced
on Xn × Xn by WEn . Define the cycle network on n nodes to be
Gn := (Xn, AGn). A cycle network on 6 nodes is illustrated in Figure
6, along with its weight matrix. If x1, x2, . . . , xk ∈ Xn appear in Gn
in this clockwise order, we will write x1 � x2 � . . . � xk.

Notice that cycle networks are square-free. If a ≺ b ≺ c ≺ d are four
nodes on a cycle network, then for any δ ∈ R such that we have an
edge a→ d, we automatically have an edge a→ c. Thus the subgraph
induced by {a, b, c, d} cannot be either a long or a short square.

Cycle networks constitute an interesting family of examples with
surprising connections to existing literature [AAF+16] [AA15]. In par-
ticular, their Dowker persistence diagrams can be fully characterized
by results in [AAF+16], [AA15], and [CM16b]. More specifically, given
any n ≥ 3, we know that DgmD

1 (Gn) consists of the point (1, dn/2e)
with multiplicity 1. In this sense, a cycle network is a directed ana-
logue of the circle.

A natural test to see if PPH detects cyclic behavior in an expected
way is to see if it can be characterized for cycle networks. This is the
content of the following theorem.

Theorem 15. Let Gn be a cycle network for some integer n ≥ 3. Fix a field K = Z/pZ for some
prime p. Then DgmΞ

1 (Gn) = {(1, dn/2e)}.
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5. Algorithmic Details

The origin of a general persistent homology algorithm for simplicial complexes can be traced
back to [ELZ02] for Z/2Z coefficients, and to [ZC05] for arbitrary field coefficients. Here it was
observed that the persistence algorithm has the same running time as Gaussian elimination over
fields, i.e. O(m3) in the worst case, where m is the number of simplices.

The PPH setting is more complicated, due to two reasons: (1) because of directionality, the
number of p-paths on a vertex set is much larger than the number of p-simplices, for any p ∈ N,
and (2) one must first obtain bases for the ∂-invariant p-paths {Ωp : p ≥ 2}. The first item is
unavoidable, and even desirable—we capture the asymmetry in the data, thus retaining more
information. For the second item, note that Ω0 and Ω1 are just the allowed 0 and 1-paths, so their
bases can just be read off from the network weight function. After obtaining compatible bases for
the filtered chain complex

{
Ωi
• → Ωi+1

•
}
i∈N, however, one can use the general persistent homology

algorithm [ELZ02, ZC05, CK11]. By compatible bases, we mean a set of bases {Bi
p ⊆ Ωi

p : 0 ≤ p ≤
D + 1, i ∈ N} such that Bi

p ⊆ Bi+1
p for each i, and relative to which the transformation matrices

Mp of ∂p are known. Here D is the dimension up to which we compute persistence.
We now present a procedure for obtaining compatible bases for the ∂-invariant paths. Fix a

network (X,AX). We write Rp to denote Rp(X,K), for each p ∈ Z+. Given a digraph filtration on
X, we obtain a filtered vector space {Ai• → Ai+1

• }Ni=1 and a filtered chain complex {Ωi
• → Ωi+1

• }Ni=1

for some N ∈ N. For any p-path v, define its allow time as at(v) := min{k ≥ 0 : v ∈ Akp}.
Similarly define its entry time as et(v) := min{k ≥ 0 : v ∈ Ωk

p}. The allow time and entry time
coincide when p = 0, 1, but are not necessarily equal in general. In Figure 5, for example, we have
at(x4x1x2) = 1 < 2 = et(x4x1x2).

Now fix p ≥ 2, and consider the map ∂p : Rp → Rp−1. Let Mp denote the matrix representation
of ∂p, relative to an arbitrary choice of bases Bp and Bp−1 for Rp and Rp−1. For convenience,

we write the bases as Bp ={vpi : 1 ≤ i ≤ dim(Rp)} and Bp−1 ={vp−1
i : 1 ≤ i ≤ dim(Rp−1)},

respectively. Each basis element has an allow time that can be computed efficiently, and the allow
times belong the set {1, 2, . . . , N}. By performing row and column swaps as needed, we can arrange
Mp so that the basis vectors for the domain are in increasing allow time, and the basis vectors for
the codomain are in decreasing allow time. This is illustrated in Figure 7.

A special feature of Mp is that it is stratified into horizontal strips given by the allow times of
the codomain basis vectors. For each 1 ≤ i ≤ N , we define the height range i as:

hr(i) := {1 ≤ j ≤ dim(Rp−1) : at(vp−1
j ) = i}.

In words, hr(i) lists the codomain basis vectors that have allow time i. Next we transform
Mp into a column echelon form Mp,G, using left-to-right Gaussian elimination. In this form, all
nonzero columns are to the left of any zero column, and the leading coefficient (the topmost nonzero
element) of any column is strictly above the leading coefficient of the column on its right. The
leading coefficients are usually called pivots. An illustration of Mp,G is provided in Figure 7. To
obtain this column echelon form, the following elementary column operations are used:

(1) swap columns i and j,
(2) replace column j by (col j − k(col i)), where k ∈ K.

The basis for the domain undergoes corresponding changes, i.e. we replace vpj by (vpj − kv
p
i ) as

necessary. We write the new basis Bp,G for Rp as {v̂pi : 1 ≤ i ≤ dim(Rp)}. Moreover, we can write

this basis as a union Bp,G = ∪Ni=1B
i
p,G, where each Bi

p,G := {v̂pk : 1 ≤ k ≤ dim(Rp), et(v̂pk) ≤ i}.
This follows easily from the column echelon form: for each basis vector v of the domain, the
corresponding column vector is ∂p(v), and at(∂p(v)) can be read directly from the height of the
column. Specifically, if the row index of the topmost nonzero entry of ∂p(v) belongs to hr(i), then
at(∂p(v)) = i, and if ∂p(v) = 0, then at(∂p(v)) = 0. Then we have et(v) = max(at(v), at(∂p(v))).
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Remark 16. In the Gaussian elimination step above, we only eliminate entries by adding paths
that have already been allowed in the filtration. This means that for any operation of the form
vpj ← vpj − kv

p
i , we must have at(vpi ) ≤ at(vpj ). Thus at(vpj − kv

p
i ) = at(vpj ). It follows that the allow

times of the domain basis vectors do not change as we pass from Mp to Mp,G, i.e. Mp and Mp,G

have the same number of domain basis vectors corresponding to any particular allow time.

Now we repeat the same procedure for ∂p+1 : Rp+1 → Rp, taking care to use the basis Bp,G
for Rp. Because we never perform any row operations on Mp+1, the computations for Mp+1 do
not affect Mp,G. We claim that for each 1 ≤ i ≤ N and each p ≥ 0, Bi

p,G is a basis for Ωi
p.

The correctness of the procedure amounts to proving this claim. Assuming the claim for now, we

obtain compatible bases for the chain complex
{

Ωi
• → Ωi+1

•
}N
i=1

. Applying the general persistence
algorithm with respect to the bases we just found now yields the PPH diagram.

Correctness. Note that all paths become allowed eventually, so dim(ΩN
p ) = dim(Rp). We claim

that Bi
p,G is a basis for Ωi

p, for each 1 ≤ i ≤ N . To see this, fix 1 ≤ i ≤ N and let v ∈ Bi
p,G. By the

definition of Bi
p,G, et(v) ≤ i, so v ∈ Ωi

p. Each Bi
p,G was obtained by performing linear operations

on the basis Bp of Rp, so it is a linearly independent collection of vectors in Ωi
p. Towards a

contradiction, suppose Bi
p,G does not span Ωi

p. Let ũ ∈ Ωi
p be linearly independent from Bi

p,G, and

let ṽ ∈ Bp,G \Bi
p,G be linearly dependent on ũ (such a ṽ exists because Bp,G is a basis for Rp).

Consider the basis Bũ
p obtained from Bp,G after replacing ṽ with ũ. Let M ũ

p denote the cor-
responding matrix, with the columns arranged in the following order from left to right: the first
|Bi

p,G| columns agree with those of Mp,G, the next column is ∂p(ũ), and the remaining columns

appear in the same order that they appear in Mp,G. Notice that Mp,G differs from M ũ
p by a change

of (domain) basis, i.e. a sequence of elementary column operations. Next perform another round
of left-to-right Gaussian elimination to arrive at a column echelon form Mu

p , where u is the domain
basis vector obtained from ũ after performing all the column operations. Let Bu

p denote the corre-
sponding domain basis. It is a standard theorem in linear algebra that the reduced column echelon
form of a matrix is unique. Since Mp,G and Mu

p were obtained from Mp via column operations,
they both have the same unique reduced column echelon form, and it follows that they have the
same pivot positions.

Now we arrive at the contradiction. Since ṽ 6∈ Bi
p,G, we must have either at(ṽ) > i, or at(∂p(ṽ)) >

i. Suppose first that at(ṽ) > i. Since ũ ∈ Ωi
p, we must have et(ũ) ≤ i, and so at(ũ) ≤ i. By the

way in which we sorted M ũ
p , we know that u is obtained by adding terms from Bi

p,G to ũ. Each

term in Bi
p,G has allow time ≤ i, so at(u) ≤ i by Remark 16. But then Bu

p has one more basis
vector with allow time ≤ i than Bp, i.e. one fewer basis vector with allow time > i. This is a
contradiction, because taking linear combinations of linearly independent vectors to arrive at Bu

p

can only increase the allow time. Next suppose that at(∂p(ṽ)) > i. Then, because Mp,G is already
reduced, the column of ṽ has a pivot at a height that does not belong to hr(i). Now consider ∂p(u).
Suppose first that ∂p(u) = 0. Then the column of u clearly does not have a pivot, and it does not
affect the pivots of the columns to its right in Mu

p . Thus Mu
p has one fewer pivot than Mp,G, which

is a contradiction because both matrices have the same reduced column echelon form and hence the
same pivot positions. Finally, suppose ∂p(u) 6= 0. Since u is obtained from ũ by reduction, we also
have at(∂p(u)) ≤ at(∂p(ũ)) ≤ i. Thus Mu

p has one more pivot at height range i than Mp,G, which

is again a contradiction. Thus Bi
p,G spans Ωi

p. Since 1 ≤ i ≤ N was arbitrary, the result follows.

Data structure. Our work shows that left-to-right column reduction is sufficient to obtain com-
patible bases for the filtered chain complex {Ωi

• → Ωi+1
• }Ni=1. As shown in [ZC05], this is precisely

the operation needed in computing persistence intervals, so we can compute PPH with little more
work. It is known that there are simple ways to optimize the left-to-right persistence computation
[CK11, BKR14], but in this paper we follow the classical treatment. Following [ELZ02, ZC05], our
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at = 1 at = 2 · · · at = N

at = N

at = 1

.

.

.

basis for Rp

basis for Rp−1

at = N

at = 1

.

.

.

at = 0

0’s

Figure 7. Left: The rows and columns of Mp are initially arranged so that the
domain and codomain vectors are in increasing and decreasing allow time, respec-
tively. If there are no domain (codomain) vectors having a particular allow time,
then the corresponding vertical (horizontal) strip is omitted. Right: After convert-
ing to column echelon form, the domain vectors of Mp,G need not be in the original
ordering. But the codomain vectors are still arranged in decreasing allow time.

data structure is a linear array T labeled by the elementary regular p-paths, 0 ≤ p ≤ D+ 1, where
D is the dimension up to which homology is computed. For completeness, in Appendix D we show
how to modify the algorithms in [ZC05] to obtain PPH.

Analysis. The running time for this procedure is the same as that of Gaussian elimination over
fields, i.e. it is O(m3), where m is the number of D-paths (if we compute persistence up to dimension
D−1). This number is large: the number of regular D-paths over n points is n(n−1)D. Computing
persistence also requires O(m3) running time. Thus, to compute PPH in dimension D − 1 for a
network on n nodes, the worst case running time is O(n3+3D).

Compare this with the problem of producing simplicial complexes from networks, and then
computing simplicial persistent homology. For a network on n nodes, assume that the simplicial
filtration is such that every D-simplex on n points eventually enters the filtration (see [CM16b] for
such filtrations). The number of D-simplices over n points is

(
n

D+1

)
, which is of the same order

as nD+1. Thus computing simplicial persistent homology in dimension D − 1 via such a filtration
(using the general algorithm of [ZC05]) still has complexity O(n3+3D).

6. Discussion

We presented persistent path homology (PPH) as a novel tool for performing topological data
analysis on directed networks. We proved its stability by appealing to a homotopy theory for
digraphs. We proved some fundamental characterization results, i.e. that PPH agrees with
Čech/Dowker persistence in metric spaces (more generally in symmetric/undirected networks) in
dimension 1 (but not necessarily in higher dimensions), and that PPH recognizes the periodic
structure of a cycle network as a directed analogue of a circle, as it should. For this last result, we
developed a separate characterization result showing that even on asymmetric/directed networks,
PPH agrees with Dowker persistence if the network is square-free.

From the computational standpoint, we proved that the problem of finding a natural basis when
computing PPH is automatically solved inside the general persistent homology algorithm, and thus
does not cost any additional overhead. Future work includes optimizing the computation of PPH,
perhaps in the same way that tools from matroid theory or discrete Morse theory can be employed
for efficient computation of simplicial persistent homology.
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Appendix A. Digraph maps and functoriality

A digraph map between two digraphs GX = (X,EX) and GY = (Y,EY ) is a map f : X → Y
such that for any edge (x, x′) ∈ EX , we have f(x)

→
= f(x′). Recall that this notation means:

either f(x) = f(x′), or (f(x), f(x′)) ∈ EY .

To extend path homology constructions to a persistent framework, we need to verify the func-
toriality of path homology. As a first step, one must understand how digraph maps transform into
maps between vector spaces. Some of the material below can be found in [GLMY14]; we contribute
a statement and verification of the functoriality of path homology (Proposition 18) that is central
to the PPH framework (Definition 1).

Let X,Y be two sets, and let f : X → Y be a set map. For each dimension p ∈ Z+, one defines
a map (f∗)p : Λp(X) → Λp(Y ) to be the linearization of the following map on generators: for any
generator [x0, . . . , xp] ∈ Λp(X),

(f∗)p([x0, . . . , xp]) := [f(x0), f(x1), . . . , f(xp)].

Note also that for any p ∈ Z+ and any generator [x0, . . . , xp] ∈ Λp(X), we have:(
(f∗)p−1 ◦ ∂nr

p

)
([x0, . . . , xp]) =

p∑
i=0

(−1)i(f∗)p−1

(
[x0, . . . , x̂i, . . . , xp]

)
=

p∑
i=0

(−1)i[f(x0), . . . , f̂(xi), . . . , f(xp)]

=
(
∂nr
p ◦ (f∗)p

)
([x0, . . . , xp]).

It follows that f∗ := ((f∗)p)p∈Z+ is a chain map from (Λp(X), ∂nr
p )p∈Z+ to (Λp(Y ), ∂nr

p )p∈Z+ .
Let p ∈ Z+. Note that (f∗)p(Ip(X)) ⊆ Ip(Y ), so (f∗)p descends to a map on quotients

(f̃∗)p : Λp(X)/Ip(X)→ Λp(Y )/Ip(Y )

which is well-defined. For convenience, we will abuse notation to denote the map on quotients
by (f∗)p as well. Thus we obtain an induced map (f∗)p : Rp(X) → Rp(Y ). Since p ∈ Z+ was
arbitrary, we get that f∗ is a chain map from (Rp(X), ∂p)p∈Z+ to (Rp(Y ), ∂p)p∈Z+ . The operation
of this chain map is as follows: for each p ∈ Z+ and any generator [x0, . . . , xp] ∈ Rp(X),

(f∗)p([x0, . . . , xp]) :=

{
[f(x0), f(x1), . . . , f(xp)] : f(x0), f(x1), . . . , f(xp) are all distinct, and

0 : otherwise.

We refer to f∗ as the chain map induced by the set map f : X → Y .
Now given two digraphs GX = (X,EX), GY = (Y,EY ) and a digraph map f : GX → GY , one

may use the underlying set map f : X → Y to induce a chain map f∗ : R•(X) → R•(Y ). As one
could hope, the restriction of the chain map f∗ to the chain complex of ∂-invariant paths on GX
maps into the chain complex of ∂-invariant paths on GY , and moreover, is a chain map. We state
this result as a proposition below, and provide a reference for the proof.

Proposition 17 (Theorem 2.10, [GLMY14]). Let GX = (X,EX), GY = (Y,EY ) be two digraphs,
and let f : GX → GY be a digraph map. Let f∗ : R•(X) → R•(Y ) denote the chain map
induced by the underlying set map f : X → Y . Let (Ωp(GX), ∂GXp )p∈Z+, (Ωp(GY ), ∂GYp )p∈Z+
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denote the chain complexes of the ∂-invariant paths associated to each of these digraphs. Then
(f∗)p(Ωp(GX)) ⊆ Ωp(GY ) for each p ∈ Z+, and the restriction of f∗ to Ω•(GX) is a chain map.

Henceforth, given two digraphs G,G′ and a digraph map f : G→ G′, we refer to the chain map
f∗ given by Proposition 17 as the chain map induced by the digraph map f . Because f∗ is a chain
map, we then obtain an induced linear map (f#)p : Hp(G)→ Hp(G

′) for each p ∈ Z+.
The preceding concepts are necessary for developing the theory of path homology. We use this

set up to state and prove the following result, which is used in defining PPH (Definition 1) and
also for proving stability (Theorem 9).

Proposition 18 (Functoriality of path homology). Let G,G′, G′′ be three digraphs.

(1) Let idG : G → G be the identity digraph map. Then (idG#)p : Hp(G) → Hp(G) is the
identity linear map for each p ∈ Z+.

(2) Let f : G → G′, g : G′ → G′′ be digraph maps. Then ((g ◦ f)#)p = (g#)p ◦ (f#)p for any
p ∈ Z+.

Proof. Let p ∈ Z+. In each case, it suffices to verify the operations on generators of Ωp(G). Let
[x0, . . . , xp] ∈ Ωp(G). We will write idG∗ to denote the chain map induced by the digraph map idG.
First note that

(idG∗)p([x0, . . . , xp]) = [idG(x0), . . . , idG(xp)] = [x0, . . . , xp].

It follows that (idG∗)p is the identity linear map on Ωp(G), and thus (idG#)p is the identity linear
map on Hp(G). For the second claim, suppose first that g(f(x0)), . . . , g(f(xp)) are all distinct.
This implies that f(x0), . . . , f(xp) are also all distinct, and we observe:

((g ◦ f)∗)p([x0, . . . , xp]) = [g(f(x0)), . . . , g(f(xp))] assuming g(f(xi)) all distinct

= (g∗)p([f(x0), . . . , f(xp)]) because f(xi) all distinct

= (g∗)p
(
(f∗)p([x0, . . . , xp])

)
.

Next suppose that for some 0 ≤ i 6= j ≤ p, we have g(f(xi)) = g(f(xj)). Then we obtain:

((g ◦ f)∗)p([x0, . . . , xp]) = 0 = (g∗)p
(
(f∗)p([x0, . . . , xp])

)
.

It follows that ((g ◦ f)∗)p = (g∗)p ◦ (f∗)p. The statement of the proposition now follows. �

Appendix B. Interleaving distance and stability of persistent path homology.

Given ε ≥ 0, two R-indexed persistent vector spaces V = {V δ
νδ,δ′−−→ V δ′}δ≤δ′ and U = {U δ

µδ,δ′−−−→
U δ
′}δ≤δ′ are said to be ε-interleaved [CCSG+09, BL14] if there exist two families of linear maps

{ϕδ : V δ → U δ+ε}δ∈R,

{ψδ : U δ → V δ+ε}δ∈R
such that the following diagrams commute for all δ′ ≥ δ ∈ R:

V δ V δ′ V δ+ε V δ′+ε

U δ+ε U δ
′+ε U δ U δ

′

νδ,δ′

ϕδ

ϕδ′

νδ+ε,δ′+ε

µδ+ε,δ′+ε

ψδ

µδ,δ′
ψδ′

V δ V δ+2ε V δ+ε

U δ+ε U δ U δ+2ε

νδ,δ+2ε

ϕδ

ψδ+ε
ϕδ+ε

ψδ

µδ,δ+2ε
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The purpose of introducing ε-interleavings is to define a pseudometric on the collection of persis-
tent vector spaces. The interleaving distance between two R-indexed persistent vector spaces V,U
is given by:

dI(U ,V) := inf {ε ≥ 0 : U and V are ε-interleaved} .
One can verify that this definition induces a pseudometric on the collection of persistent vector
spaces [CCSG+09, BL14]. The interleaving distance can then be related to the bottleneck distance
as follows:

Theorem 19 (Algebraic Stability Theorem, [CCSG+09]). Let U ,V be two R-indexed persistent
vector spaces. Then,

dB(Dgm(U),Dgm(V)) ≤ dI(U ,V).

A special case of the Algebraic Stability Theorem is the Persistence Equivalence Theorem [EH10].
This particular version follows from the isometry theorem [BL14], and we refer the reader to
[CDSGO12, Chapter 5] for an expanded presentation of this material.

Theorem 20 (Persistence Equivalence Theorem). Consider two persistent vector spaces U =

{U δ
µδ,δ′−−−→ U δ

′}δ≤δ′∈R and V = {V δ
νδ,δ′−−→ V δ′}δ≤δ′∈R with connecting maps fδ : U δ → V δ′.

· · · V δ V δ′ V δ′′ · · ·

· · · U δ U δ
′

U δ
′′ · · ·

fδ fδ′ fδ′′

If the fδ are all isomorphisms and each square in the diagram above commutes, then:

Dgm(U) = Dgm(V).

Appendix C. PPH and Dowker persistence

Definition 3 (Type I and II Dowker simplices). Let (X,AX) ∈ N , fix δ ∈ R, and let σ be a simplex
in Dsi

δ,X . Then we define σ to be a Type I simplex if some x ∈ σ is a δ-sink for σ. Otherwise, σ is
a Type II simplex. Notice that if σ is a Type II simplex, then there exists x 6∈ σ such that x is a
δ-sink for σ.

We define analogous notions at the chain complex level: a chain σ ∈ C•(Dsi
δ,X) is of Type I if

each element in its expression corresponds to a Type I simplex. Otherwise, σ is of Type II.

Lemma 21 (Proposition 2.9, [GLMY14]). Let G be a finite digraph. Then any v ∈ Ω2(G) is a
linear combination of the following three types of ∂-invariant 2-paths:

(1) aba with edges (a, b), (b, a) (a double edge),
(2) abc with edges (a, b), (b, c), (a, c) (a triangle), and
(3) abc− adc with edges (a, b), (b, c), (a, d), (d, c), where a 6= c and (a, c) is not an edge (a long

square).

Lemma 22 (Parity lemma). Fix a simplicial complex K and a field Z/pZ for some prime p. Let
w :=

∑
i∈I biτi be a 2-chain in C2(K) where I is a finite index set, each bi ∈ Z/pZ, and each τi is

a 2-simplex in K. Let σ be a 1-simplex contained in some τi such that σ does not appear in ∂∆
2 (w).

Define Jσ := {j ∈ I : σ a face of τj}. Then there exists n(σ) ∈ N such that:

w =
∑
i∈I\Jσ

biτi +

n(σ)∑
j=1

(τ+
j + τ−j ),

where ∂∆
2 (τ+

j + τ−j ) is independent of σ for each 1 ≤ j ≤ n(σ).
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Proof of Lemma 22. Since we are working over Z/pZ, we adopt the convention that bi ∈ {0, 1, . . . , p− 1}
for each i ∈ I. Then for each j ∈ Jσ, we know that ∂∆

2 (τj) contributes either +σ or −σ with mul-
tiplicity bj . Write w =

∑
i∈I\Jσ biτi +

∑
j∈Jσ bjτj .

Since σ is not a summand of ∂∆
2 (w), it follows that

∑
j∈Jσ bj = 0. Define:

J+
σ := {j ∈ Jσ : τj contributes + σ} , J−σ := {j ∈ Jσ : τj contributes − σ} .

Then w =
∑

i∈I\Jσ biτi +
∑

j∈J+
σ
bjτj +

∑
j∈J−σ bjτj .

Also define k := |J+
σ |, and enumerate J+

σ as {j1, . . . , jk}. Write n+(σ) :=
∑k

m=1 bjk , where the
sum is taken over Z (not Z/pZ). Next define a finite sequence (τ+

1 , . . . , τ
+
n+(σ)

) as follows:

τ+
i := τj1 for i ∈ {1, . . . , bj1} ,
τ+
i := τj2 for i ∈ {bj1 + 1, . . . , bj1 + bj2} , . . . ,

τ+
i := τjk for i ∈

{
k−1∑
m=1

bjm + 1, . . . ,
k∑

m=1

bjm

}
.

Here the indexing element i is of course taken over Z and not Z/pZ. Similarly we define a sequence

(τ−1 , . . . , τ
−
n−(σ)

). Then w =
∑

i∈I\Jσ biτi +
∑n+(σ)

m=1 τ+
m +

∑n−(σ)
m=1 τ−m.

The expression for ∂∆
2 (w) contains +σ with multiplicity n+(σ) and −σ with multiplicity n−(σ),

such that the total multiplicity is 0, i.e. is a multiple of p. Thus we have n+(σ)−n−(σ) ∈ pZ. There
are two cases: either n+(σ) ≥ n−(σ) or n+(σ) ≤ n−(σ). Both cases are similar, so we consider the
first. Let q be a nonnegative integer such that n+(σ) = n−(σ) + pq. We pad the τ− sequence by
defining τ−i := τ−

n−(σ)
for i ∈ {n−(σ) + 1, . . . , n−(σ) + pq}. Then we have:

w =
∑
i∈I\Jσ

biτi +

n+(σ)∑
m=1

τ+
m +

n−(σ)∑
m=1

τ−m =
∑
i∈I\Jσ

biτi +

n+(σ)∑
m=1

τ+
m +

n−(σ)∑
m=1

τ−m +

n−(σ)+pq∑
m=n−(σ)+1

τ−m

=
∑
i∈I\Jσ

biτi +

n+(σ)∑
m=1

τ+
m +

n+(σ)∑
m=1

τ−m. �

Theorem 13. Let X = (X,AX) ∈ N be a square-free network, and fix K = Z/pZ for some prime
p. Then DgmΞ

1 (X ) = DgmD
1 (X ).

Proof of Theorem 13. Let δ ∈ R. First we wish to find an isomorphism ϕδ : HΞ
1 (Gδ

X)→ H∆
1 (Dsi

δ,X).

We begin with the basis B for Ω1(Gδ
X). We claim that B is just the collection of allowed 1-paths

in Gδ
X . To see this, let ab be an allowed 1-path. Then ∂1(ab) = b− a, which is allowed because the

vertices a and b are automatically allowed. Thus ab ∈ Ω1(Gδ
X), and so B generates Ω1(Gδ

X).

Whenever ab is an allowed 1-path, we have a directed edge (a, b) in Gδ
X , and so AX(a, b) ≤ δ by

the definition of Gδ
X . Thus the simplex [a, b] belongs to Dsi

δ,X , with b as a δ-sink. Hence [a, b] is a 1-

chain in C1(Dsi
δ,X). Define a map ϕ̃δ : Ω1(Gδ

X)→ C1(Dsi
δ,X) by setting ϕ̃δ(ab) = [a, b] and extending

linearly. The image of ϕ̃δ restricted to B is linearly independent because any linear dependence
relation would contradict the independence of B. Furthermore, ϕ̃δ induces a map ϕ̃′δ : ker(∂Ξ

1 ) →
ker(∂∆

1 ). We need to check that this descends to a map ϕd : ker(∂Ξ
1 )/ im(∂Ξ

2 ) → ker(∂∆
1 )/ im(∂∆

2 )
on quotients. To see this, we need to verify that ϕ̃′δ(im(∂Ξ

2 )) ⊆ im(∂∆
2 ).

By Lemma 21, we have a complete characterization of Ω2(Gδ
X). Thus we know that any element

of im(∂Ξ
2 ) is of the form ba + ab, bc − ac + ab, or bc + ab − dc − ad. In the first case, we have

ϕ̃′δ(ba+ab) = [b, a] + [a, b] = [b, a]− [b, a] = 0 ∈ im(∂∆
2 ). The next case corresponds to the situation

where we have abc ∈ Ω2(Gδ
X) with edges (a, b), (b, c), (a, c) in Gδ

X . In this case, [a, b, c] is a 2-simplex
in Dsi

δ,X , with c as a δ-sink. Thus [b, c]− [a, c] + [a, b] = ϕ̃′δ(bc− ac+ ab) belongs to im(∂∆
2 ).
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The final case cannot occur because Gδ
X is square-free. It follows that ϕ̃′δ(im(∂Ξ

2 )) ⊆ im(∂∆
2 ),

and so we obtain a well-defined map ϕδ : HΞ
1 (Gδ

X)→ H∆
1 (Dsi

δ,X).

Next we check that ϕδ is injective. Let v =
∑k

i=0 aiσi ∈ ker(ϕδ), where the ai terms belong to

the field K and each σi is a 1-path in Gδ
X . Then ϕδ(v) = ϕδ(

∑k
i=0 aiσi) = ∂∆

2 (
∑m

j=0 bjτj), where

the bj terms belong to K and each τj is a 2-simplex in Dsi
δ,X .

Claim 4. w :=
∑m

j=0 bjτj is homologous to a 2-cycle
∑n

k=0 b
′
kτ
′
k in C2(Dsi

δ,X), where each τ ′k is of

the form [a, b, c] and abc is a triangle in Gδ
X .

Suppose the claim is true. Then we immediately see that v ∈ im(∂Ξ
2 ). Thus ker(ϕδ) = im(∂Ξ

2 ),
and hence ker(ϕδ) is trivial in HΞ

1 (Gδ
X). This shows that ϕδ is injective.

Proof of Claim 4. Let us now prove the claim. Suppose τj is a Type II simplex, for some 0 ≤
j ≤ m. Write τj = [u, x, y]. Then there exists z ∈ X such that z is a δ-sink for τj . But then
[u, x, y, z] ∈ Dsi

δ,X , and ∂∆
3 ([u, x, y, z]) = [x, y, z]− [u, y, z] + [u, x, z]− [u, x, y]. Since ∂∆

2 ◦ ∂∆
3 = 0, it

follows that [u, x, y] is homologous to [x, y, z]− [u, y, z] + [u, x, z], each of which is a Type I simplex.
Using this argument, we first replace all Type II simplices in w by Type I simplices.

Next let τ be a Type I simplex in the rewritten expression for w. By taking a permutation and
appending a (−1) coefficient if needed, we can write τ = [x, y, z], where z is the δ-sink for τ . Thus
(x, z), (y, z) are edges in Gδ

X . If (x, y) or (y, x) is also an edge, then xyz is a triangle, and we are

done. Suppose that neither is an edge, i.e. neither of xy, yx is in Ω1(Gδ
X). Then, since xy is not a

summand of v, we know that [x, y] is not a summand of ϕδ(v). Thus we are in the setting of Lemma
22, because ∂∆

2 (w) = ϕδ(v). Define J := {0 ≤ j ≤ m : [x, y] a face of τj}. By applying Lemma 22,
we can rewrite w:

w =
m∑

i 6∈J,i=0

biτi +

n([x,y])∑
j=1

(τ+
j + τ−j ),

where all the summands of w containing [x, y] as a face are paired in the latter term. Each τ+ + τ−

summand has the following form: [x, y] is a face of both τ+ and τ−, and both τ+ and τ− are Type
I simplices. Fix 1 ≤ j ≤ n([x, y]). Then for some z, u ∈ X, τ+

j = [x, y, z] and τ−j = [x, u, y] have
the following arrangement:

x

y

zu

x

y

zu

x

y

zu

Since (X,AX) is square-free, we must have at least one of the edges (z, u) or (u, z) in Gδ
X .

Suppose (z, u) is an edge. Because we have

∂∆
3 ([x, y, z, u]) = [y, z, u]− [x, z, u] + [x, y, u]− [x, y, z],

it follows that [x, y, z]− [x, y, u] = [x, y, z] + [x, u, y] = τ+
j + τ−j is homologous to [y, z, u]− [x, z, u],

where yzu and xzu are both triangles in Gδ
X .

For the other case, suppose (u, z) is an edge. Because we have ∂∆
3 ([x, y, u, z]) = [y, u, z]−[x, u, z]+

[x, y, z]− [x, y, u], we again know that τ+
j + τ−j is homologous to [x, u, z]− [y, u, z], where xuz and

yuz are both triangles in Gδ
X .

We can repeat this argument to replace all summands of w containing [x, y] as a face. Since
τ = [x, y, z] was arbitrary, this proves the claim. �
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It remains to verify that ϕδ is surjective. Let v =
∑m

i=0 aiτi be a 1-cycle in C1(Dsi
δ,X). First we

wish to show that v is homologous to a 1-cycle v′ =
∑n

i=0 biτ
′
i of Type I. Let τi be a Type II simplex

in the expression for v, for some 0 ≤ i ≤ m. Write τi = [x, y], and let z be a δ-sink for τi. Then
[x, y, z] is a simplex in Dsi

δ,X , and ∂∆
2 ([x, y, z]) = [y, z]− [x, z] + [x, y]. Thus [x, y] is homologous to

[x, z] − [y, z], each of which is a Type I simplex. This argument shows that v is homologous to a
1-cycle v′ of Type I.

Next let τ ′ be a 1-simplex in the expression for v′. Write τ ′ = [x, y]. If x is the δ-sink for τ ′,
then we replace the τ ′ = [x, y] in the expression of v′ with −[y, x]. This does not change v, since
we have τ ′ = [x, y] = −[y, x] in C1(Dsi

δ,X). After repeating this procedure for each element of v′, we

obtain a rewritten expression for v′ in terms of elements [x, y] where y is the δ-sink for [x, y]. Let
v′ =

∑n
i=0 b

′
i[xi, yi] denote this new expression.

Finally, observe that for each [xi, yi] in the rewritten expression for v′, we also have (xi, yi) as an
edge in Gδ

X . Thus
∑n

i=0 b
′
ixiyi is a 1-cycle in HΞ

1 (Gδ
X) that is mapped to v′ by ϕδ. It follows that

ϕδ is surjective, and hence is an isomorphism.
To complete the proof, let δ ≤ δ′ ∈ R. Consider the inclusion maps ιG : Gδ

X ↪→ Gδ′
X and

ιD : Dsi
δ,X ↪→ Dsi

δ′,X , and let (ιG)#, (ιD)# denote the induced maps at the respective homology

levels. Let v =
∑n

i=0 aixiyi be a 1-cycle in HΞ
1 (Gδ

X). Then we have:

(ϕδ′ ◦ (ιG)#)

(
n∑
i=0

aixiyi

)
= ϕδ′

(
n∑
i=0

aixiyi

)
=

n∑
i=0

ai[xi, yi]

= (ιD)#

(
n∑
i=0

ai[xi, yi]

)
= ((ιG)# ◦ ϕδ)

(
n∑
i=0

ai[xi, yi]

)
.

Thus the necessary commutativity relation holds, and the theorem follows by the Persistence
Equivalence Theorem. �

Theorem 15. Let Gn be a cycle network for some integer n ≥ 3. Fix a field K = Z/pZ for some
prime p. Then DgmΞ

1 (Gn) = {(1, dn/2e)}.

Proof of Theorem 15. From [CM16b], we know that DgmD
1 (Gn) = {(1, dn/2e)}. Thus by Theorem

13, it suffices to show that Gn is square-free. Suppose n ≥ 4, and let a, b, c, d be four nodes that
appear in Gn in clockwise order. First let δ ∈ R be such that (a, b), (b, c), (a, d), (d, c) are edges in
Gδ
Gn

. Then ωGn(d, c) ≤ δ, and because of the clockwise orientation d � a � c, we automatically

ωGn(a, c) ≤ δ. Hence (a, c) is an edge in Gδ
Gn

, and so the subgraph induced by a, b, c, d is not a
long square.

Next suppose δ ∈ R is such that (a, b), (c, b), (a, d), (c, d) are edges in Gδ
Gn

. Since ωGn(c, b) ≤ δ

and c � a � b in Gn, we have ωGn(c, a) ≤ δ. Hence (c, a) is an edge in Gδ
Gn

, and so the subgraph
induced by a, b, c, d is not a short square. �

Theorem 12. Let X = (X,AX) ∈ N be a symmetric network, and fix K = Z/pZ for some prime
p. Then DgmΞ

1 (X ) = DgmD
1 (X ).

Proof of Theorem 12. The proof is similar to that of Theorem 13; instead of repeating all details, we
will show how the argument changes when the square-free assumption is replaced by the symmetry
assumption. Let δ ∈ R, and consider the map ϕ̃′δ : ker(∂Ξ

1 ) → ker(∂∆
1 ) defined as in Theorem 13.

As before, we need to check that this descends to a map ϕd : ker(∂Ξ
1 )/ im(∂Ξ

2 )→ ker(∂∆
1 )/ im(∂∆

2 )
on quotients. For this we need to verify that ϕ̃′δ(im(∂Ξ

2 )) ⊆ im(∂∆
2 ).

By Lemma 21, we know that any element of im(∂Ξ
2 ) is of the form ba + ab, bc − ac + ab, or

bc + ab − dc − ad. For the first two cases, we can repeat the argument used in Theorem 13. The
final case corresponds to the situation where we have a long square in Gδ

X consisting of edges
(a, b), (b, c), (a, d), and (d, c). This gives the 2-chain abc − adc. Now by the symmetry condition,
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we also have edges (c, d) and (c, b). Thus [a, b, c] is a 2-simplex in Dsi
δ,X , with b as a δ-sink, and

[a, d, c] is a 2-simplex with d as a δ-sink. Hence [a, b, c] − [a, d, c] is a 2-chain in C2(Dsi
δ,X). Thus

ϕ̃′δ(bc+ab−dc−ad) = [b, c]+ [a, b]− [d, c]− [a, d] belongs to im(∂∆
2 ). Thus we obtain a well-defined

map ϕδ : HΞ
1 (Gδ

X)→ H∆
1 (Dsi

δ,X).

Next we need to check that ϕδ is injective. As in Theorem 13, let v ∈ ker(ϕδ). Then ϕδ(v) =

ϕδ(
∑k

i=0 aiσi) = ∂∆
2 (
∑m

j=0 bjτj), where the ai, bj terms belong to the field K, each σi is a 1-path

in Gδ
X , and each τj is a 2-simplex in Dsi

δ,X . We proceed by proving an analogue of Claim 4 in the

symmetric setting. Write w :=
∑m

j=0 bjτj . We need to show that w is homologous to a 2-cycle∑n
k=0 b

′
kτ
′
k in C2(Dsi

δ,X), where each τ ′k is of the form [a, b, c] and abc is either a triangle or part of

a square in Gδ
X .

As in the proof of Claim 4, we first replace all Type II simplices in w by Type I simplices. Next let
τ = [x, y, z] be a Type I simplex in w, and suppose z is the δ-sink for τ , but neither of (x, y), (y, x)
is an edge. As in the proof of Theorem 13, we apply Lemma 22 to separate the summands of w
containing [x, y] as a face into pairs of the form (τ+ + τ−). Writing τ+ = [x, z, y] and τ− = [x, y, u],
we obtain the following arrangement:

x

y

zu

x

y

zu

By the symmetry assumption, (z, y) and (u, y) are also edges in Gδ
X , and so xuy, xzy are both

allowed 2-paths. Since τ− = [x, y, u] = −[x, u, y], we can replace τ++τ− by [x, z, y]−[x, u, y], where
xzy − xuy is a square in Gδ

X . Proceeding in this way, we replace each summand of w containing
[x, y] as a face. We repeat this argument for each choice of τ = [x, y, z] in the expression for w.

Finally, we obtain an expression of w such that there exists v′ ∈ Ω2(Gδ
X) satisfying ϕδ(v

′) = w.

Then we have ∂Ξ
2 (v′) = v, and so v = 0 in HΞ

1 (Gδ
X). Thus ϕδ is injective.

We omit the remainder of the argument, because it is a repeat of the corresponding part of
the proof of Theorem 13. In summary, it turns out that ϕδ is surjective, hence an isomorphism,
and furthermore that it commutes with the linear maps induced by the canonical inclusions. This
concludes the proof. �

Appendix D. The modified persistence algorithm

We use the notation introduced in §5. By our observations in §5, computing bases for the
filtered chain complex {Ωi

• → Ωi+1
• }Ni=1 can be done simultaneously while performing the column

reduction operations needed for persistence, and this does not cause any additional overhead. For
notational convenience, we use a collection T0, . . . , TD+1 of linear arrays, where each Tp contains a
slot for each elementary regular p-path. Specifically, for each vpj ∈ Bp (the chosen basis for Rp),
Tp contains a slot labeled (vpj , et(v

p
j ), at(v

p
j )) which can store a linked list of (p − 1)-paths and an

integer corresponding to an entry time. We sort each Tp according to increasing allow time and
relabel Bp if needed so that vpj is the label of Tp[j]. Thus it makes sense to talk about the index of

vpj in Tp: we define index(vpj ) = j, and Tp[index(vpj )] is labeled by (vpj , et(v
p
j ), at(v

p
j )). Note that if

v, v′ ∈ Bp are such that index(v) ≤ index(v′), then at(v) ≤ at(v′).
Below we present a modified version of the algorithm in [ZC05] that computes PPH. We make

one last remark, based on an observation in [ZC05]: because of the relation ∂p ◦ ∂p+1, a pivot
column of the reduced boundary matrix Mp,G corresponds to a zero row in Mp+1,G. Thus whenever
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we compute ∂p(v) in our algorithm, we can immediately remove the summands that correspond to
pivot terms in Mp−1,G. This is done in Algorithm 2.

Algorithm 1 Computing persistent path homology

1: procedure ComputePPH(X , D + 1) . Compute PPH of network X up
to dimension D

2: for p = 0, . . . , D do
3: Persp = ∅; . Store intervals here
4: for j = 1, . . . ,dim(Rp+1) do

5: [u, i, et] =BasisChange(vp+1
j , p+ 1);

6: if u = 0 then Mark Tp+1[j];
7: else
8: Tp[i]← (u, et);
9: Add (et(vpi ), et) to Persp;

10: for j = 1, . . . ,dim(Rp) do
11: if Tp[j] marked and empty then
12: Add (et(vpj ),∞) to Persp;

13: return Pers0, . . . ,PersD;

Algorithm 2 Left-to-right column reduction

1: procedure BasisChange(v,dim) . Find pivot or zero columns
2: p← dim; u = ∂p(v); Remove unmarked (pivot) terms from u;
3: while u 6= 0 do
4: σ ← argmax{index(τ) : τ is a summand of u};
5: i← index(σ);
6: et← max(at(v), at(σ));
7: if Tp−1[i] is unoccupied then break;

8: Let a, b be coefficients of σ in Tp−1[i] and u, respectively;
9: u← u− (a/b)Tp−1[i]; . Column reduction step

10: return u, i, et;
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