Ohio State University Partial Differential Equations Seminar 

  Year 2018-2019

Time/Location: Wednesdays 11:00 am- noon / MW 154 (unless otherwise noted)

Schedule of talks:


 
TIME  SPEAKER TITLE HOST

August 29 

Ni Xiang 
(Hubei University, China) 
The Neumann problem for fully nonlinear elliptic equations on Riemannian Manifolds  Guan 

September 5 

No seminar 
() 
   

September 12 

No seminar 
() 
   

September 19 

No seminar 
() 
   

September 26 

No seminar 
() 
   

October 3 

No seminar 
() 
   

October 10 

No seminar 
() 
   

October 17 

No seminar 
() 
   

October 19 

No seminar 
() 
   

October 24 

No seminar 
() 
   

October 31 

No seminar 
() 
   

November 9 

No seminar 
() 
   

November 14 

No seminar 
() 
   

November 21 

No seminar 
() 
   

November 28 

No seminar 
() 
   

December 5 

No seminar 
() 
   

December 12 

No seminar 
() 
   

December 19 

No seminar 
() 
   

December 26 

No seminar 
() 
   
January 2 
No Seminar 
() 
   
January 9 
No Seminar 
() 
   
January 16 
No Seminar 
() 
   
January 23 
No Seminar 
() 
   
January 30 
No Seminar 
() 
   
February 6 
No Seminar 
() 
   
February 13 
No Seminar 
() 
   
February 20 
No Seminar 
() 
   
February 27 
No Seminar 
() 
   
March 6 
No Seminar 
() 
   
March 13 
No Seminar 
() 
   
March 20 
No seminar 
() 
   
March 27 
No Seminar 
() 
   
April 3 
No Seminar 
() 
   
April 10 
No seminar 
() 
   
April 17 
No seminar 
() 
   
April 24 
No Seminar 
() 
   

Abstracts

Ni Xiang (Aug 29, 2018)

Title: The Neumann problem for fully nonlinear elliptic equations on Riemannian Manifolds
Abstract: Fully nonlinear partial differential equations play important roles in geo- metric problems, such as curvature equations in classical geometry and the Yamabe problems on manifolds. A key to understand these equations is to establish a priori estimates for these equations. The Dirichlet problems have received much attention. In this talk we report some recent results joint with Professor Guan Bo for the Neu- mann problem of fully nonlinear elliptic equations on Riemannian manifolds. We try to delete the structural condition for the Neumann boundary in deriving estimates for second derivatives. And we use a priori estimates and blow-up methods to derive the gradient estimates.

This page is maintained by Adrian Lam.
Does the page seem familiar?